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CHAPTER I. INTRODUCTION 

Experimental and theoretical study of electronic excitation transport 

(EET) has been prompted at least in part by the role of this process in 

photosynthesis. It was first shown in 1932 [1,2] that a large number of 

chlorophyll (Chi) molecules act cooperatively in photosynthetic oxygen 

evolution. Using short, intense flashes of light, Emerson and Arnold [2] 

found that on the average, 2480 Chi molecules interact to produce one 

molecule of O2. This result implied the existence of a photosynthetic 

unit, a group of closely associated Chi molecules which carries out the 

primary events in the photosynthetic chemical reaction (see Chapter V). 

This "coopérâtivity" was later explained [3] in terms of EET across a 

large array of Chi molecules (antennae) until the excitation reaches a 

trap (reaction center), where irreversible photochemistry takes place. 

The presence of the antenna increases the efficiency of photosynthesis in 

two ways; first, since the probability of absorption of the antenna 

molecules is approximately additive, the effective absorption of the trap 

is greatly increased. Second, the incorporation of different pigments 

(e.g., Chi a, Chi b, carotenoids) absorbing at different wavelengths 

allow the photosynthetic unit to use a greater portion of the solar 

spectrum. In order for an antenna system to be effective, each pigment 

molecule must be able to transfer its excitation to the reaction center 

before the excitation is lost to radiative or nonradiative processes. 

This requirement places severe demands on the efficiency, and therefore 

the organization of photosynthetic antennae. 

The mechanism most often invoked for EET is the electrostatic dipole-
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dipole interaction as described by Forster [4]. This theory predicts 

that the probability of EET between two molecules separated by a distance 

R is proportional to R"® (see below). Therefore, the timescale of EET 

within the antenna is very sensitive to the separation of the Chi 

molecules. The aim of this work is to aid in the characterization of EET 

in random systems and then to apply the same techniques to photosynthetic 

antennae, which will provide insight into the chromophore organization 

and transfer dynamics in photosynthetic antennae. 

Explanation of Dissertation Format 

Chapters III and IV of this dissertation are published works 

pertaining to excitation transfer in systems of randomly oriented dye 

molecules on surfaces and in solution, respectively. Also, Chapters VI, 

VII and VIII are published works dealing with energy transfer in 

photosynthetic antenna systems. Each of these chapters contains a 

description of the experimental apparatus as it was used for the specific 

experiment; however, Chapter II contains a much more detailed description 

of the apparatus used to measure time-resolved absorption depolarization, 

with computer programs relevant to control of the experiment given in the 

Appendices. A survey of the literature pertinent to the photosynthetic 

systems studied appears in Chapter V, which also contains a section 

dealing with theoretical modeling of absorption depolarization. The 

remainder of Chapter I gives some necessary background in the theory of 

electronic energy transfer including a delineation of the strong coupling 

and weak coupling limits. Finally, the reader should note that each 
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Chapter contains a separate list of references; consult the table of 

contents for the page number of the appropriate list of references. 

Review of Electronic Energy Transfer 

Following absorption of a photon by a molecule, the resulting 

electronic excitation energy may be transferred to another molecule by 

radiative (i.e., fluorescence and reabsorption) or nonradiative 

interactions. It has been shown [5] that if the molecules are far apart 

(R >= &/2nn. A, = fluorescence wavelength, n = refractive index of 

medium) then radiative transfer, although inefficient, is the only 

plausible mechanism; however, for molecules much closer together, (R < 

•JĈ /̂ ) nonradiative transfer may become very efficient. The purpose of 

this section is to give a brief review of the theory of nonradiative 

excitation transfer as developed by Forster [6] since transition rates 

predicted by this theory will appear often in the remainder of this work. 

Nonradiative excitation transfer arises from the Coulomb interaction 

of the electron clouds of the two molecules, which introduces a 

perturbation in the Hamiltonian H of the system 

A A A  
H = (1.1) 

where Hq is the unperturbed Hamiltonian and is the intermolecular 

interaction potential. For a system of two molecules and one excitation, 

there are two quantum mechanical configurations, VgfVb and VgVb/f where 

the prime denotes the excited state (i.e., the excitation on molecule a 
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and on molecule b, respectively). These configurations have energies 

Wg/jj and Wgjj/, which are the total energies of the separated molecules. 

When the molecules are brought close together, there is a specific 

interaction energy U between the two configurations due to the presence 

of Tab 

U = <Va/Yb|VablVb'> (1-2) 

This interaction has the effect of mixing the separated states of energy 

Wg/jj and Wgb' so that two new states are formed with energies Ŵ ., W_ 

given by [6] 

•'±=l"'a'b̂ "ab'' *ÎIH2î (1-3) 

where 

-1 2U 
2o = tan rj  ̂ (1.4) 

*a'b *ab' 

Since the resonance integral U arises from the interaction of charges 

on the two molecules, it can be calculated from classical electrostatics. 

The electric field around a point charge e is inversely proportional to 

the square of the distance from the charge (E = e/R̂ ) or, written in 

vector notation, 
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The electric field is related to a scalar potential * by 

K = -V* (1.6) 

so for a point charge 

* = e/R (1.7) 

For the purpose of evaluating U, we are interested in the transition 

charge densities on each atom (charge in excited state minus charge in 

the ground state) of the molecule. This constitutes a system of charges 

ejL located at radius vectors for which the electric field (and 

therefore the scalar potential) are additive. When summed over all 

charges ê  and written in vector notation, Eq. 1.7 becomes 

•  -  g  i R  \ i  

where R is the vector from the origin to the point at which the potential 

is to be measured, and R - is the vector from the charge ê  to the 

measuring point. If R » r̂ , (the measurement is made at a large 

distance from the molecule) then 1/|R - r̂ | may be expanded in a Taylor 

series 

IR - r; I R ~ ̂ i' \ (1-9) 
'•1' 

so that Eq. 1.8 becomes 
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1 
-T - (1-10) 

For the case of transition charge densities lê  = 0 because electrical 

charge must be conserved in the transition. The quantity lê r̂  is the 

dipole moment of the system of charges; stopping the expansion in Eq. 1.9 

after the first order constitutes the dipole approximation. Substituting 

p for the dipole moment and using V(l/R) = R/R̂ / Eq. 1.10 becomes 

Using the definition of the potential in Eq. 1.6, the electric field of 

the system of charges is 

E = = -IRr̂ V(ii-R) - (ii-R)VIRr̂  (1.12) 
iRr 

Because p is independent of R we may write V(prR) = p, and using V(l/R̂ ) 

= -3R/R̂ / then 

2 . 3(p.R,R - ,R|2p 

|R|5 

so that the electric field intensity of a system of charges with = 0 

falls off as R"3. The energy of interaction between two systems is 

calculated by placing one system in the field of the other. Again using 

the dipole approximation 
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U = (1.14) 

where the subscript denotes the system of charges (molecule a or molecule 

b). Substitution of Eq. 1.13 gives 

" 3(11--R) (Pu-R) 
y = —̂  5-̂  (1.15) 

iRr 

which is often written as 

i K l  I P k I  
U = % K (1.16) 

where 

r = coso - cospgcosp̂  (1.17) 

Here, o is the angle between the dipoles, and g is the angle between a 

dipole and the vector connecting the two dipoles. 

There are two limiting cases for the strength of the resonance 

interaction U. At one limit is the strong coupling case, where 

2|U| » iWgfjj - Wgjjf I, and the new system energies of Eq. 1.4 are 

approximated by 

«± = + "ab'*  ̂" (I'lS) 

This strong interaction mixes the separated states very much like atomic 



www.manaraa.com

orbitals interact to form a molecular orbital (see Fig. 1-la); the new 

states are often called "exciton states". As a result, the absorption 

and circular dichroism spectra show two peaks separated by 2\J, as shown 

in Fig. 1-lb and 1-lc. The intensity ratio of the two exciton absorption 

peaks depends on the geometry of the a-b dimer and may vary from zero to 

infinity. The total intensity, however, must be equal to that of the 

separated molecules (see Fig. 1-lb). Strong coupling can also produce a 

large increase in the magnitude of CD peaks (Fig. 1-lc), again depending 

on the geometry. When excitonic CD spectra do appear, the spectrum is 

conservative (i.e., the CD signal sums to zero). 

It is possible, and not at all unusual, to have a situation where 

more than two molecules are strongly interacting. In this case, the 

problem is solved by diagonalization of the symmetric Hamiltonian matrix 

A = 

1̂ "12•• 

2̂1*2 

U, 
Nl" 

U, 
IN 

W„ 

(1.19) 

for the N-molecular system. The diagonalization gives a set of N 

eigenvalues, which are the energies of the N exciton states, and a set of 

N eigenvectors which describe the degree of mixing of the î  ̂molecular 

state in the exciton state 

'k - C «iK "i (1 .20)  
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a) 

Wab' 2U 

\ 
\ 
\ 

h-
/ 
I 
/ 
/ 

-'W. 
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b) 
(0 
.o 
< 

(0 
jQ 
< 

Strong^ 
coupling A 

c) 

Q 

O 

strong ^ q 
coupling U 

Figure 1-1. Effect of strong coupling in a two-molecule system a) Mixing 

of two molecular states (Wg»jj and to form two exciton 

states in the strong coupling limit, b) Effect of strong 

coupling of two molecules on absorption spectrum, and on 

c) circular dichroism (CD) spectrum. 
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Here, denotes the component of the eigenvector. The ĉ jç 

are useful in calculating the predicted absorption and CD spectra of the 

N-molecule complex. The absorption of the exciton component A% 

appearing at energy is given by [7] 

\ - p. îiK<=jK Pi (1-211 
1/ ]=1 

using the dipole approximation and the CD intensity of this exciton 

component is 

-5 N 
Cjç = 1.7x10 «Q E °iK°jK ®ij" (Pî Pj) (1.22) 

if j=l 
i>j 

In Eqs. 1.21 and 1.22, is the dipole vector of the î  ̂molecule with 

magnitude in Debye (1 Debye = 10"̂ ® esu-cm), j is the distance vector 

from the dipole of molecule i to that of molecule j (in nm), and (ô  is 

the band center (N"̂ lWjj). Knowing the position (eigenvalue) and 

intensity of each exciton component, the absorption and CD spectra are 

customarily generated by expanding each component in a gaussian of 

appropriate linewidth. 

If two or more molecules are strongly interacting, they will mix to 

form exciton states as shown above, but the question of the location of 

the excitation has not been answered. In order to determine the 

excitation probability densities, time-dependent perturbation theory must 

be used. Returning to the two-molecule, one excitation system, solution 
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of the time dependent problem shows that under the strong interaction the 

excitation will show wavelike behavior with oscillations back and forth 

between the two molecules [6]. If molecule a is initially excited, then 

the first maximum in the probability that the excitation is on molecule b 

occurs at time 

t = sin 2o (1.23) 

where h is Planck's constant. Since sin2o = 1 for strong interaction 

(see Eq. 1.4), this defines a "quasi-transfer rate" of 

As defined in Eq. 1.17, U is proportional to the inverse cube of the 

distance between molecules; the quantity 4|U|/h is therefore the "R~̂  

rate" often mentioned in the literature for strongly interacting 

molecules. 

The second limiting case is where the interaction energy U is small, 

which defines the weak coupling case (this is called "very weak coupling" 

by Fôrster [6]; his "weak coupling" case does not apply for large 

molecules). If 2|U| « |Wg,̂  - |, then sin2a = 0, and the system 

energy levels are given by " ̂ ab'• Therefore, there is 

very little mixing of states, and the absorption (and CD) spectra are 

essentially unchanged from that of the separated molecules. In this 

limit, the excitation may be considered to reside on either molecule a or 
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molecule b, with a definite probability of transfer. This rate of 

transfer is again calculated using time-dependent perturbation theory, 

but now molecular vibrational states must be taken into account as well. 

In the strong coupling case, the effect of ignoring molecular vibrations 

was that a definite phase relationship was assumed between the vibrations 

of the unexcited and excited molecules. This implies that the strong 

coupling "transfer rate" of Eq. 1.24 is valid only for rates of greater 

than I/T2, where T2 is the chromophore dephasing time. In the weak 

coupling limit, the molecular vibrations are assumed to be completely 

thermalized in the excited molecule (as well as in the unexcited one). 

Femtosecond transient absorption experiments [8,9] have shown that 

thermalization occurs on a timescale of a few hundred femtoseconds in 

large organic dye molecules, independent of the solvent. Under the 

assumption of thermalized vibrations, the transfer probability acquires 

the form of 

where g'(Eg) and gfÊ ) are the Boltzmann factors for the molecules in the 

integrals (Franck-Condon factors) between ground and excited states of 

molecules a and b. The integrals in Eq. 1.25 are therefore closely 

related to the absorption and emission spectra, and the transition rate 

can be expressed as 

g' (El)S' (E',E'-hw)dE (1.25) 

excited and unexcited states and s| and are vibrational overlap 
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6 

n (1.26) 

where is the intrinsic lifetime of molecule a and the critical 

transfer distance Rq is given by 

Here, n is the refractive index of the medium, * is the quantum yield of 

fluorescence of molecule a, and N is Avogadro's number. The fluorescence 

spectrum f̂ tm) of molecule a and the molar extinction coefficient ê tm) 

of molecule b are on a wavenumber (o) scale, and the fluorescence 

spectrum is normalized to unity (ffa(m)dm = 1). 

In comparing Eq. 1.24 and Eq. 1.26, one can see that in the strong 

coupling case the transfer rate varies as R~̂  and in the weak coupling 

case the transfer rate is proportional to R~®. Kenkre and Knox [10] have 

bridged the gap between these two regimes by using memory functions which 

decay exponentially with the time constant I/T2. Knox has argued [11] 

that the decay time Tg of phase information is -5x10"̂  ̂s, based on the 

absorption bandwidth of (bacterio)chlorophyll monomers. As a result, 

there is a very brief time during which the excitation has the wavelike 

form of strong coupling, after which the excitation must be considered as 

localized on either molecule a or molecule b, and the R"® rate applies. 

In the weak coupling limit, two distinct types of EET may be 

distinguished; transfer between like molecules (D -» D transfer) and 

6 ̂  9000K (In 10)* 

° 128 n̂  N 
(1.27) 
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transfer betweeen unlike molecules (D -» A transfer). While D -» D 

transfer is reversible (it must be, due to symmetry), D -» A transfer 

often is not due to the effect of the overlap integral in Eq. 1.27. This 

can be explained from the absorption and emission specta of the 

interacting molecules shown in Fig. 1-2. While the fluorescence of the 

donor fg and the absorption of the acceptor have good overlap and 

therefore a large Forster parameter the opposite situation (fĵ  and 

cjj) have very little overlap and almost no probability of transfer. In 

such a system, the excitation will become localized on the lower energy 

molecule with a low probability of back-transfer. 

Electronic excitation transfer was first detected in D -* A systems 

as sensitized luminescence, in which a "sensitizer" molecule absorbs 

light and transfers its energy to a "fluorescer" molecule, which is 

detected by its emission. Such a situation occurs often in 

photosynthetic systems; for example, in green plants, chlorophyll (Chi) b 

absorbs maximally at -650 nm, but no Chi b emission is observed. 

Instead, emission from Chi a, which absorbs at -680 nm, is observed. A 

contrasting type of situation is that in which the absorbing molecule 

transfers its excitation to a nonfluorescing "trap". This situation also 

exists in photosynthetic systems, where the donor is an antenna 

chromophore, and the trap is the reaction center, which due to its high 

efficiency in charge separation, shows little or no fluorescence. 

When an excited molecule is able to transfer its excitation (in the 

weak coupling limit) to a nonfluorescent trap, an additional decay of 

rate kj ("Oa-*) introduced into the system 
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Figure 1-2. Relative position of absorption (e) and fluorescence (f) 

spectra of donor (D) and acceptor (A) molecules. Note that 

donor emission and acceptor absorption show a large degree 

of spectral overlap. 
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= ̂ obs - ko + kp (1.28) 

where k̂ jjg is the observed decay rate and kg is the decay rate in the 

absence of a trap molecule. Therefore, the effect is a lowering of the 

observed lifetime, For a system with random molecular positions a 

range of lifetimes is observed due to variation in the distance Rgjj 

between molecules. If we assume that traps far outnumber donor molecules 

([T] » [D]), and the molecules are randomly oriented (k̂  = 2/3), the 

form of the excited state decay P(t) can be calculated analytically as 

wjiere the dimensionless reduced concentration of traps Cj is given by 

Here, pg, is the trap number density (number of molecules per unit volume) 

and the factor g = 0.8452 arises from the static limit assumption that the 

molecules do not rotate during their excited state lifetime. 

The condition under which Eq. 1.29 is valid is that [D] is small 

enough that the rate of transfer between donor molecules (D -» D transfer) 

is negligible compared to the rate of excitation decay. Inclusion of 

D -» D transfer complicates theoretical development considerably, since 

more than one hop per excitation becomes possible. In this case, the 

excitation probability function is given by a linked set of master 

P(t) = exp[-t/T - gCj(3nt/2t)̂ /2] (1.29) 

Ct 3 " PT (1.30) 
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equations [12] 

dp. 

dt vÇ 
N 

jk̂ k̂ ' E \-iP-i - P-s/'d (1.31a) 
k=N+l  ̂ ° 

N+M 

dp. 

dt ° - Pj/'T 

N 
N+lSjSN+M (1.31b) 

where donor molecules are numbered 1 through N and nonfluorescent (deep) 

trap molecules N+1 through N+M. Pj(t) gives the probability that the 

excitation is on molecule j at time t, and Wjĵ  and Vjĵ  are the transfer 

rates given by Eq. 1.26 for D -» D and D -* T transfer, respectively, tjj 

and tj are the measured lifetimes of donor and trap molecules in the 

absence of energy transfer. For a system with no trap molecules (only 

D -» D transfer possible), Eq. 1.31 reduces to 

where the monomolecular decay term tp is eliminated by the substitution 

Pj(t) = pj(t)exp(-t/TQ). Eqs. 1.31 and 1.32 are valid in any system of 

weakly coupled molecules; if the system N (or N+M) is small enough, the 

set of master equations may be solved simultaneously and the probability 

distribution of excitation sites will be known at all times (for a given 

set of initial parameters). However, for larger systems such as random 

molecules in solution, the problem is intractable, and approximate 

solutions must be generated. 

(1.32) 
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It is important to note that for the case of [T] -• 0, no change in 

the excited state lifetime is observed (kj = 0 in Eq. 1.29). For systems 

with only D -» D transfer, EET is detected by depolarization techniques. 

Fluorescence depolarization (Fig. l-3a) is a well-known technique in 

which a linearly polarized light pulse excites the sample and 

fluorescence components I|| (t) and Ij.(t) with polarization parallel and 

perpendicular to the excitation pulse are observed. For a system of 

molecules in three dimensions, these components are described by 

I|,(t) = P(t) (1 + 0.8G®(t)] 

(1.33) 

IJt) = P(t) [1 - 0.4GS(t)] 

where P(t) is the isotropic decay observed in the absence of energy 

transfer. The isotropic decay may be measured by placing a polarizer in 

the fluorescence at 54.7' from parallel; this effectively measures the 

weighted average (2lj_(t) + Ii|(t))/3, which from Eqs. 1.33 is P(t). Then 

G®(t) may be expressed as 2.5(I||(t) - Ij/t))/3P(t), or the time-dependent 

fluorescence anisotropy multiplied by 2.5. Ĝ (t) normally ranges from 

1.0 (maximum anisotropy) to 0.0 (fully depolarized). 

The experimental configuration for pump-probe spectroscopy is shown 

in Fig. l-3b. In this case, the absorption components A„(t) and Aj_(t) 

are measured by using pump and probe pulses with parallel and 

perpendicular polarizations, respectively. The isotropic decay P(t) is 

measured with the probe beam polarization rotated 54,7° from the pump 

beam polarization. As it is drawn in Fig. 3, I,,(t) and Ij.(t) correspond 

to polarization along the x and y axes, respectively, while A||(t) and 



www.manaraa.com

19 

a) 

excitation/ ^ 
' / 

'I fluorescence 

& 
-»y 

pumo 
-»y 

Figure 1-3. Schematic of energy transfer detected by a) fluorescence 

depolarization, and b) absorption depolarization. In both 

cases, excitation beams are linearly polarized; in a) 

polarized fluorescence is detected. 
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Aj_(t) correspond to polarizations along the x and z axes. It has been 

shown [13] that, assuming parallel absorption and emission dipoles, the 

components along the y and z axes are equivalent. Therefore, Eqs. 1.33 

are valid for absorption components A||(t) and Aj_(t) as well as the 

fluorescence components I„(t) and Ij_(t). 

Much theoretical work has been done on random systems of D -• D 

electronic excitation transport in solution. Since Eq. 1.32 cannot be 

solved analytically for such a system, several theorists [14,15] have 

developed approximations to its solution of varying degrees of 

complexity. It has been shown experimentally [13] that a relatively 

simple approximation (the two-particle theory [14]) is accurate for a 

large range of concentrations of organic dye molecules in solution. The 

two-particle model predicts that in a 3-dimensional system the 

polarization will decay as 

G8(t) = exp[-CD(nt/2TD)l/2] (1.34) 

where Cg is the dimensionless reduced donor concentration analogous to 

in Eq. 1.30. Again, the exp(-t̂ /̂ ) behavior arises from dispersion in 

the distance between molecules; nonrandom systems will in general display 

different forms in the polarization decay (see Chapter V). 
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CHAPTER II. EXPERIMENTAL 

The main experimental technique used in this work is transient 

absorption (pump-probe) spectroscopy. This consists of exciting the 

sangle with a short pump pulse and some time later measuring the 

transmission through the sample of a short probe pulse. In experiments on 

strongly absorbing molecules such as in this work, transient 

photobleaching is detected; the pump pulse lifts a fraction of the sample 

to the excited state, where the absorption coefficient is less than in the 

ground state, and the probe pulse therefore experiences an increase in 

transmission. This "induced transmission", or photobleaching, is plotted 

as a function of the delay time t̂  between pulses; as the delay time 

increases, a greater fraction of the molecules have returned to the ground 

state before the arrival of the probe pulse and the photobleaching curve 

tends toward zero. The plot of photobleaching vs. delay time therefore 

describes the ground state recovery of the ensemble of molecules absorbing 

at the probe wavelength. Note that this procedure does not rely on the 

speed of any electronic measuring device; time resolution of pump-probe 

experiments depends only on the temporal width of the optical pulses used. 

Historically, there have been two rather distinct classes of pump-

probe experiments: those using low repetition rates {< 1000 Hz) and 

rather intense (microjoule to millijoule) pulses, and those using high 

repetition rates (>1 MHz) and weak (nanojoule or less) pulses. In the 

first type, the optical delay is often varied in discrete steps, with a 

number of laser shots averaged at each delay position. In the second type 

(including the experiments described in this work), the optical delay is 
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varied smoothly and the photobleaching signal is detected as a continuous 

function of the delay. The sections below describe the details of the 

picosecond laser system, pump-probe optical setup, detection electronics, 

and computer experimental control as used in Chapters IV, VI, VII, and 

VIII. An additional section discusses experimental artifacts common in 

pump-probe spectroscopy. 

Passively Mode-Locked Dye Lasers 

There are two basic ways of producing a mode-locked dye laser: 

synchronously pumping with an actively mode-locked pump laser [1], or 

adding a mode-locking dye to an otherwise completely continuous-wave 

system. Synchronous pumping has the advantage of stability and ease of 

use (as well as the ability to reduce the repetition rate by cavity 

dumping), while passive mode-locking is less expensive (since no acousto-

optic mode-locker and drive electronics are required for the pump laser) 

and generally produces narrower pulses. (Synchronous pumping and passive 

mode-locking may be combined to produce hybrid mode-locking; all of these 

techniques have been qualitatively compared in the literature [2].) The 

narrowest pulses directly from a laser (27 fs) have been generated in a 

colliding pulse mode-locked (CPM) dye laser [3] which is a passively mode-

locked laser in a ring configuration; however, CPM lasers suffer from low 

output power and little tunability. By using various combinations of gain 

and absorber dyes, pulses shorter than 1 ps have been generated over a 

large part of the visible wavelength range [4] in a simple two-jet linear 

cavity (Fig. 2-1) by passive mode-locking. 
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Figure 2-1, Schematic of linear-cavity passively mode-locked dye laser; 

overall length is not to scale. 
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Passive mode-locking arises from saturable absorption in the mode-

locking dye and saturable amplification in the gain dye. The saturable 

absorber sharpens the leading edge of the intracavity pulse as shown in 

Fig. 2-2a; the solid line shows the pulse before passing through the 

saturable absorber jet, the dashed line after the jet. The leading edge 

is decreased in amplitude due to absorption by the mode-locking (absorber) 

dye, but at the peak the dye has become bleached; that is, the majority of 

the molecules are in the excited state and the optical density is very 

small. Therefore, the peak and trailing edge of the pulse pass through 

the jet nearly unhindered, and the result is a sharpening of the leading 

edge and an overall narrowing of the pulse. The trailing edge is shaped 

in a similar way by saturable amplification in the gain dye (see Fig, 

2-2b). The leading edge and peak are amplified by the gain jet, but this 

returns most of the dye molecules to the ground state so that the trailing 

edge receives little or no amplification. In this way, the trailing edge 

is diminished as compared to the peak and the pulse full-width at half-

maximum is reduced. 

These pulse-shortening mechanisms have been examined theoretically 

[5,6] by injecting a Lorentzian pulse into a model cavity and calculating 

its shape evolution through many cavity round-trips. The conditions 

corresponding to stable mode-locking were a net round-trip loss on the 

leading and trailing edges of the pulse and a net round-trip gain at the 

peak. The calculations showed that these conditions could be met provided 

that; 1) the relaxation time of the gain medium is of the same order of 

magnitude as the cavity round-trip time; 2) the relaxation time of the 

absorber is less than the relaxation time of the gain medium; and 
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Figure 2-2. Idealized view of effect of a) saturable absorption and 

b) saturable gain in passively modelocked dye laser. Solid 

lines are laser pulse before passing through the respective 

element, dotted lines are after the element. 
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3) the s parameter defined by 

A_o 
= iftr (2-1) 

is large (>2). In Eq. 2.1, is the absorber cross-section, Og is the 

stimulated emission cross-section, and Ag and Ag are the beam areas in the 

absorber and gain dyes, respectively. According to this theoretical 

development, the cavity pulse may be narrowed by as much as a factor of V2 

for each cavity round-trip, and such narrowing continues indefinitely. In 

a real cavity, this narrowing is counteracted by dispersion and bandwidth 

restriction and an equilibrium pulse width is eventually reached. 

The in-house built dye laser used in this work was of the design shown 

in Fig. 2-1, with R = 10 cm for M2 and M3 and R = 5 cm for M4 and M5. The 

output was transmitted through the flat mirror (Ml), which was typically 

95% reflecting. The overall length of the cavity was 120 cm, giving a 

repetition rate of 125 MHz, or one pulse every 8 ns. Tuning was 

accomplished with a 0.5 mm thick single-plate birefringent filter and the 

laser was pumped with 1.5 - 2.5 W of all-lines output of a continuous-wave 

argon ion laser. Combinations of gain dye/absorber dye used were 

rhodamine 6G (R6G)/DQ0CI, DCM/DQTCI, and DCM/DDCI. Each of the three 

requirements for stable mode-locking was met in this cavity. The 

relaxation times of the gain dyes (-3.4 ns for R6G, -2 ns for DCM) are of 

the order of the round-trip time of 8 ns; the relaxation time of the 

absorber dyes (each <1.5 ns) was less than that of the gain dyes, and 

using 2x shorter focal length mirrors for the absorber dye than for the 
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gain dye (Ag = 43%) assured that the s parameter of Eq. 2-1 was large. 

Pulse widths between 0.8 ps and 2.5 ps (autocorrelation width) were 

obtained at all wavelengths and typical output powers varied from 30 to 80 

mW. The pulse width was most likely limited by the spectral bandpass of 

the single plate biréfringent filter and by intracavity dispersion. 

Multiple Modulation 

The traditional method of detection in pump-probe experiments using 

high repetition rate lasers is by lock-in amplification. A mechanical 

chopper is placed in the pump beam path, which introduces a square-wave 

modulation on the beam at frequency fghop* transient photobleaching is 

detected, the transmission through the sample of the probe beam is smaller 

when the pump beam is blocked by the chopper than when the pump beam is 

unblocked. Therefore, the sample introduces a small modulation of 

frequency f̂ hop the intensity of the probe beam; its amplitude is 

proportional to the excited state population. The output of a photodiode 

detecting the probe beam intensity is routed directly to a lock-in 

amplifier (LIA), which measures the amplitude of the modulation on the 

probe beam. The output of the LIA therefore measures the amount of 

photobleaching, which is recorded as a function of the delay between pump 

and probe pulses. 

The major disadvantage to this approach to detection is that the 

amount of noise on the output of most continuous-wave modelocked dye 

lasers is orders of magnitude larger at low frequencies than at high 

frequencies. It has been shown [7] that at frequencies in the megahertz 
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range, the noise level approaches the shot noise limit (the theoretical 

limit due to random arrival of photons at the photodetector). This 

implies that if the pump beam were modulated at a frequency in the 

megahertz range, then the data quality would be much improved. 

Unfortunately, mechanical choppers cannot be operated at this speed; 

instead, acousto-optic modulation is used. In general, acousto-optic 

modulation acts as a voltage-controlled beam attenuator. The attenuation 

is produced by diffraction of the beam from a grating produced by areas of 

high and low index of refraction in the acousto-optic material, which are 

the crests and valleys of an acoustic wave. The acoustic wave is produced 

by a piezoelectric transducer on the material which is driven by a large 

amplitude radio frequency (RF) voltage. The fraction of the beam 

diffracted is proportional to the power of the RF signal. To produce a 

modulation on the pump beam at 4 MHz, for example, the RF signal is 

modulated at 4 MHz as shown in Fig. 2-3; also shown are the undiffracted 

(zero-order) beam intensity and the first-order beam intensity. Since the 

different diffraction orders are separated spatially, one of them can be 

blocked and the other used in the pump-probe experiment. In our system, 

Isomet 1206C modulators and 233A-1 drivers were used, and were typically 

driven by -300 mV peak-to-peak (into 50 n) sine waves. The AOM drivers 

produced -16 V p-p when modulated at the 110 MHz center frequency; this 

was sufficient to deflect -80% of the beam into first order at the maximum 

(see Fig. 2-3). 

Another improvement to the traditional chopper/lock-in technique is to 

modulate both pump and probe beams; in this case, the sample acts as a 

molecular mixer and a modulation at the sum and difference frequency is. 
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To AOM driver: 

To AOM: 

First-order Intensity 
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Zero-order Intensity: 

I I  I I  

Figure 2-3. Signal applied to acousto-optic modulator driver, output from 

AOM driver to AOM, and resulting first-order and zero-order 

beam intensities as functions of time. 
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produced on the probe beam. This can be explained as follows: if the 

pump beam modulation is described by sin ©ĵ t, the transient photobleaching 

causes a modulation in optical density of the sample of Asin ŵ t. The 

intensity of the transmitted probe beam is the product of the incident 

intensity (sin ©2̂ ) and the fraction left unabsorbed by the sample, which 

is proportional to Asin ©̂ t. Using the relation (sin m̂ t)(sin 02%) = 

[cos ((0]̂ -a)2)t - cos ((Oi+(B2)t], one can see that sum and difference 

frequencies are produced. Demodulation at either the sum or difference 

frequency (but not both) constitutes single-sideband detection. Since the 

probe beam contains a large amplitude component at 02f it is best to set 

©l » ©2' this avoids interference due to a large ©2 very near in 

frequency to ©̂ +©2 or ©ĵ -©2. The multiple modulation technique has the 

advantage that the detection system is immune to scattered pump light and 

to electrical interference from the modulators, since neither of these 

contain components at either the sum or difference frequency. 

The frequency synthesis and detection scheme used in our laboratory 

has been described previously [8]; briefly, the system allows flexible 

modulation frequencies for both pump and probe beams with single-sideband 

detection from 0.01 to 30 MHz. The modulation frequency of the probe, ©2, 

is controlled by fĝ |. from an external frequency synthesizer as ©2 = 

l̂ ext " 48.05MHzI and is generally held fixed at ©2 « 0.5 MHz. The pump 

beam modulation frequency ©̂  is determined by the detection frequency f̂ ^̂  

set on the radio receiver as ©̂  = If̂ et ~ ̂ ext 48.05 MHz| and is 

generally used between 4.0 and 7.0 MHz at a local minimum in the laser 

noise spectrum. 
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Optical Arrangement for Pump-probe Spectroscopy 

The output of the passively modelocked dye laser was alternately 

routed to a real-time autocorrelator which has been previously described 

[9] or to the pump-probe optical arrangement shown schematically in 

Fig. 2-4. The system is basically a highly modified Michelson 

interferometer; the beamsplitter (BS in Fig. 2-4) divides the input into 

pump and probe beams, which traverse optical delay lines and are 

recombined in the sample. A 50% beamsplitter was used, resulting in 

nearly equal powers in pump and probe beams. Since only the relative 

delay between pump and probe and their relative polarization are 

important, either beam could be designated the probe with the other acting 

as pump; the choice of probe beam is made by placement of the photodiode 

(PD). That beam which is detected is automatically the probe and the 

other is the pump. In Fig. 2-4, it can be seen that the pump beam is 

variably delayed while the probe beam delay is constant. This choice was 

made because in the opposite arrangement, nonlinearity in the delay stage 

travel could possibly cause the probe beam to wander across the 

photodiode, adding noise or instability to the system. 

The polarization of pump and probe beams are chosen by identical Glan-

Thompson prisms, one of which is fixed at +45® to the input beam 

polarization, the other is variable from +45® (parallel) to -45® 

(perpendicular). The fixed polarizer was placed in the probe beam to 

avoid deviations in beam detection at the photodiode due to rotations of 

polarization; changing the pump beam polarization typically deviated the 

beam direction slightly so that re-optimization of the signal was 
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Figure 2-4. Schematic of optical arrangement for transient absorption 

(pump-probe) spectroscopy as used to study depolarization due 

to electronic energy transfer. 
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necessary by adjusting the angle of mirror Ml. 

Other than the variable delay and variable polarization, the pump and 

probe optical delay arms are very similar; each contains a corner cube 

prism (retroreflector, RR), an acousto-optic modulator (AOM), and 

collimating lens (L). Retroreflectors are useful because they have the 

property that the outgoing beam is parallel to the incoming beam, 

independent of the angular orientation of the retroreflector. This is 

particularly important for the variably delayed beam because a translation 

stage inevitably contains angular deviations from linearity of travel 

termed pitch and roll (see Fig. 2-5a). A retroreflector was used in the 

other arm of the arrangement in order to help reduce fluctuations in 

signal strength due to pointing instability of the dye laser. Fig. 2-5b 

shows how such instability can affect the signal if a rooftop prism is 

used in place of a retroreflector; an angular deviation of the input beam 

produces a large spatial deviation of the beam passing through the rooftop 

prism, but a small spatial deviation in the beam passing through the 

retroreflector. The two beams are then separated spatially in the sample 

and the signal is artificially decreased. 

The acousto-optic modulators (AOMs) are used to produce an amplitude 

modulation on the pump and probe beams as discussed above. Focussing into 

the AOMs is required not only because of the small (1 mm diameter) 

aperture of the AOM, but also because high frequency modulation is 

inefficient for large beam diameters. This can be understood by realizing 

that since the acoustic wave travels at 3.63 x 10® mm/s in lead molybdate 

(the acousto-optic material), it would take 2.75 x 10"'' s to traverse a 1 

mm beam; therefore, frequencies greater than 1/(2.75 x 10"̂  s) will 
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Figure 2-5. Possible error sources in pump-probe systems a) Deviations in 

linearity of translation stage travel in x-direction (pitch) 

and y-direction (roll). b) Displacement of beams due to 

variation in incoming angle upon reflection from rooftop 

prism (RTP) and retroreflector (CCP). 
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present areas of both high and low acoustic power to the optical beam, 

decreasing the modulation depth. However, very tight focussing limits the 

deflection efficiency because the beam intersects fewer acoustic wave 

cycles. Each of these effects were avoided to a large extent by using a 

focussing lens of 19.6 cm focal length, which produces an optical beam 

diameter of -0.10 mm at the beam waist for an input diameter of 1 mm. 

Fig. 2-4 shows that a single lens (LI) focusses into both AOMs, but 

separate collimating lenses {L2,L3) are required for pump and probe beams. 

The final lens before the sample (L4) is used to focus both pump and 

probe beams into the sample. Using a common lens rather than separate 

lenses has the advantage that spatial overlap of pump and probe beams can 

be assured (for a one-color experiment) by requiring that the beams be 

parallel to each other prior to entering the lens. The choice of focal 

length of lens L4 involves a trade-off between beam waist diameter and 

amount of spatial overlap of pump and probe beams. A short focal length 

lens causes a smaller spot size (which increases the signal strength due 

to greater power density), but causes pump and probe beams to converge at 

a greater angle, which decreases spatial overlap and hence the signal. It 

may be reasoned that the former effect is more important since the signal 

is proportional to the square of the photon flux; taking all factors (see 

the section on artifacts below) into account, a 7.3 cm focal length lens 

was chosen, giving a spot size of -25 pm in the sample. 

Samples were housed between fused silica plates using spacers of 

100 pm to 800 pm in thickness depending on the optical density of the 

sample. Thick spacers are generally preferred so that positioning of the 

sample is not a critical parameter; however, for concentrated solutions a 
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thick sample transmits very little of the probe besim and the signal is 

attenuated. Therefore, it is advantageous to adjust either the sample 

concentration or spacer thickness for an absorbance of -0.2 at the laser 

wavelength. 

The transmitted probe intensity is detected by an EG&G FOD-100 

photodiode, which produces -0.3 amperes per watt of optical power at the 

wavelengths used here. The output of the photodiode (with 2 kli internal 

termination) was routed directly to the input (nominally 50 Si) of a 

modified Drake R-7A receiver [8] and the transient signal detected as 

described above. An additional FOD-100 photodiode sampled the relative 

laser intensity using a stray reflection from the surface of one of the 

optical components (PI). The output of this photodiode went to an in-

house built current-to-voltage converter and RC filter, which supplied a 

voltage from 0 V to 10 V (linearly proportional to laser power) to a spare 

analog-to-digital converter on the SR510 lock-in amplifier, which was read 

by the data collection program (see the section on computer control 

below). 

Computer Control of Experiment 

The pump-probe experiments of Chapters IV, VI, VII, and VIII were 

performed under completely computerized control of optical delay scanning 

and data collection. Digital control of the experiment reduces possible 

errors in time-delay position, allows ramping up and down of the rate of 

movement of the delay stage (necessary at higher speeds), and offers ease 

of use. Computerized data collection eliminates possible loss of data 
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while transferring from an external device, and supplies data in a 

convenient form for fitting to various mathematical models. A schematic 

diagram of the computer control and data collection system is shown in 

Fig. 2-6. Two computers were used in the system; a dedicated Commodore 64 

(C64) provided control of the translation stage stepper motor and recorded 

its position, while a DEC MINC 23 operating in a TSX-Plus multiuser 

environment read experimental data from the lock-in amplifier, normalized 

it to the laser power, and stored it in a disk file. 

Two user-programmable chips onboard the C64 computer are shown 

explicitly in Fig. 2-6; the signals used to control the stepper motor are 

derived from these two chips. One is a 6581 Sound Interface Device (SID), 

which is designed to produce audio waveforms. The other is a 6526 Complex 

Interface Adapter (CIA), which provides access to an 8-bit parallel 

input/output register and two independent, linkable 16-bit interval 

timers/counters. The C64 computer actually contains two CIA chips, one of 

which (CIA#1) is used by the computer operating system; the other, CIA#2, 

is available to the user and is accessed via the user port. 

The source code of the program used on the C64 to control the optical 

delay translation stage is listed in Appendix A, along with a description 

of the program logic. This program was written in BASIC with machine 

language subroutines used in situations where greater speed is required. 

As shown in Fig. 2-6, three output signals are generated by the C64; two 

(STEP, DIR) are used to control the translation stage stepper motor, the 

other is sent to the MINC computer. STEP consists of a series of square 

pulses generated by the SID, with each pulse corresponding to one step of 

the stepper motor (0.1 pm for the translation stage used here). The DIR 
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Figure 2-6. Schematic of experimental apparatus used for computer control 

of pump-probe measurements. 
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output is a TTL logic level sent from CIA#2, and is used to control the 

direction of travel ("positive" or "negative") of the translation stage. 

The third output, STEP/N, is a TTL pulse occurring at a frequency of the 

STEP rate divided by an integer N. This signal synchronizes translation 

stage movement with data acquisition by commanding the MINC computer to 

record one data point per STEP/N pulse. 

Each of these three signals are sent to the Stepper Motor Driver box, 

which consists of a set of logic circuits and a high-voltage, constant-

current driver for the stepper motor. (Note that although the Fig. 2-6 

shows STEP/N being sent to the MINC computer, it actually passes through 

the Stepper Motor Driver box.) Since STEP is the only input which is not 

a TTL signal, it is routed through a comparator to remove any noise spikes 

and create a TTL-compatible logic level. The logic circuits are shown in 

Fig. 2-7; lines marked STEP, DIR, and CNT2 are connected to the C64, and 

EOT signals are from the stepper motor. The "driver" output goes to the 

stepper motor driver circuitry (see below). The two inputs from the 

stepper motor are end-of-travel (EOT) warning signals (one for each 

direction of travel), which are open-circuited in normal operation but 

grounded when the translation stage nears the respective limit. The logic 

circuit is designed so that the stepper motor cannot be driven past the 

EOT signal, but can be driven in the opposite direction while an EOT 

warning is active (the hysteresis in the signal is -1 mm of translation 

stage travel). Since it is possible for the C64 to be sending STEP pulses 

while the stepper motor is not moving (i.e., EOT reached or driver box not 

switched on) a separate line is used to send active STEP pulses back to 

the C64. These pulses are routed to the counter input of CIA#2 (labelled 
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Figure 2-7. Logic circuits contained in Stepper Motor Control Box shown 

in Fig. 2-6; see text for explanation of input and output 

signals. 
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CNT2) which records the actual number of steps taken. Likewise, the DIR 

logic level is sent back to the C64 and is used to determine the direction 

of travel. The STEP/N signal is sent through a pulse stretcher (since the 

C64 output is only 1 ps in duration) and a 50-ohm line driver before being 

routed to the MINC computer. 

In addition to being sent back to the C64 computer, the STEP output is 

also sent to an Ames Laboratory-built logic board which produces from it 

four separate signals (A, A', B, B') with the correct phase relationship 

required by the stepper motor. Each of the four phases is supplied to the 

stepper motor by a separate constant-current amplifier (designed by Ames 

Laboratory, Fig. 2-8a). Since the stepper motor itself consists of coils 

of large inductance, the voltage across any one of the four phases during 

a step cycle will appear as a large spike (up to -60 V) decaying to a non­

zero level (Fig. 2-8b). The current level is set by Rp, which was set at 

680 ilf for a current of 125 mA. Use of a constant-current type amplifier 

allows operation at higher speeds than with a conventional amplifier 

because greater torque is applied in the early stages of the waveform. 

As mentioned above, the C64 supplies a signal to the MINC computer at 

a rate of the STEP frequency divided by an integer N. During a normal 

experimental scan, a single data point is recorded for each STEP/N pulse 

received; therefore, the time calibration of the data scan is set by the 

integer N. This parameter is entered into the C64 by the user at the 

"Number of Steps/Channel" prompt; the number of femtoseconds between data 

points Kjjjj is related to N by Kq̂  = 2N/3; the factor 3 is due to the speed 

of light (three 0.1 pm steps per femtosecond), and the 2 arises from the 

fact that the the laser beam traverses the step delay distance twice. The 
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Figure 2-8. Function of stepper motor driver circuits a) Constant current 

amplifier used to send current pulses to stepper motor; b) 

voltage signal across inductive load of motor windings. 
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STEP/N signal is received by the data collection program LOCKIN (see 

Appendix B) running on the MINC computer. The logic of LOCKIN is rather 

simple; it enters a wait state until it receives an interrupt (STEP/N 

pulse), at which time it reads a data point via RS232 from the lock-in 

amplifier, plots it on the screen, and waits again. This wait/data cycle 

is repeated until 512 data points have been recorded. The program then 

normalizes the data to the square of the laser power (if this option has 

been chosen), and writes the data to a disk file. The laser power is 

detected as described above and is also read via the RS232 port. 

Experimental Artifacts 

Pump-probe experiments are prone to a several types of artifacts, some 

of which are avoidable and others unavoidable. This section will describe 

several of the most common types of artifacts, their causes, and where 

applicable, their elimination from the data. 

The most obvious artifact in single-color pump-probe experiments is 

one which cannot be avoided, the coherent coupling artifact or "coherence 

spike". It appears as a narrow spike superimposed on the data centered 

about zero delay. The coherence spike arises from an interferometric 

interaction between pump and probe pulses, and therefore only occurs when 

the pump and probe are derived from the same laser. The coherent coupling 

artifact was originally described [10] as due to a transient grating 

formed by interference of pump and probe pulses when they are 

simultaneously present in the sample. This grating could then scatter 

some pump light into the probe beam path, causing a spike in the detected 
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intensity. According to this explanation, the coherence spike would be 

expected to disappear if one used collinear, copropagating pump and probe 

beams of orthogonal polarization and detected the total transmitted 

intensity. Heinz et al. [11] tested this assertion and found that the 

coherence spike did not disappear. They offered an alternative 

explanation for the origin of coherent coupling as a "cooperative 

bleaching" of the sample while the pump and probe pulses are present in 

the sample. Mathematically, they showed that the photobleaching signal 

S(T) consisted of three terms 

where p(t) and p'(t) arise from coherent interaction of pump and probe 

pulses, and Y(T) is an incoherent term describing the rise of the desired 

signal (for which the decay is to be measured). The mathematical form of 

each term can be written explicitly for orthogonal pump and probe pulses 

if the sample consists of isotropically distributed molecules having a 

definite transition dipole moment and a fixed orientation on the timescale 

of interest. If the pump pulse is described as E(t)exp(iwt), then the 

probe pulse (being derived from the same laser) can be written as 

B(t-T) •exp(-i<Dt), which is simply a delayed copy of the pump pulse. The 

incoherent term 7(t) is then given by 

S(t) = P (t) + P' (t) + Y(t) ( 2 . 2 )  

(2.3) 
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which is the impulse response of molecular absorption A(t) convoluted with 

the intensity autocorrelation function PJ(T). On the timescale of 

interest, A(t) may be approximated as a step function; in this case, the 

incoherent term y(:) rises as the autocorrelation of pump and probe 

pulses. The two coherent coupling terms can be written as 

•[131 P(t) = Re| I dt I df E*(t-T)E(t)B*{tME(t'-t)A(t-t') j (2.4) 

P'(t) = Re|̂ e"̂ "̂̂  I'dt Ĵ dt' E*{t-t)E(t)E*(t'-T)E(t')A(t-t') j (2.5) 

The term P'(') oscillates at twice the optical frequency w, and therefore 

averages out to zero unless the probe delay is scanned extremely slowly, 

much more slowly than in the current experiments. The P(t) term describes 

the coherence spike and varies as the square of the electric field 

autocorrelation function |pg(T)|̂ , not the intensity autocorrelation 

function pj(t). This means that the width of the coherence spike depends 

not on the pulse width At but on the spectral width Am. For transform 

limited pulses pi(t) and |pg(T)|2 will coincide, but for nontransform 

limited pulses (such as those used in this work) the coherence spike will 

be narrower than the intensity autocorrelation. 

In order to correctly fit experimental data over the entire scan 

range, it is necessary to remove the effects of the coherent coupling 

artifact term P(t). Since Eqs. 2.3 and 2.4 predict that the terms p(t) 

and Y(t) are equal at zero delay, it is possible to remove the coherence 

spike by subtracting the experimentally measured electric field 
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autocorrelation normalized to half the signal at zero delay. For 

transform limited pulses, one may use the intensity autocorrelation 

function rather than the electric field autocorrelation. However, in 

practice this procedure is only applicable for perpendicular pump and 

probe polarizations; when using other polarizations, a thermally enhanced 

coherence spike occurs which is variable in size and often much larger 

than the incoherent term. When this happens, it is impossible to 

accurately subtract the term. 

Another method is to remove the coherent coupling term p(t) through 

data antisymmetrization [12]. This relatively simple procedure takes 

advantage of the fact that p(t) is predicted to be symmetric about zero 

delay. The antisymmetrized signal Sg(t) is given by 

S a ( t )  =  [ S ( t )  -  S ( - t ) ] / 2  =  [ y ( t )  -  Y ( - t ) ] / 2  ( 2 . 6 )  

where the p' (t) term is assumed to average out to zero and the p(x) term 

disappears because p(x) = p(-t). After antisymmetrizing the data, it may 

be fit as usual using a convolute-and-compare program by antisymmetrizing 

the fitted curve, between the convolute and compare steps. This procedure 

was used in Chapter III to remove not only the coherent coupling artifact, 

but also a residual artifact due to two-photon absorption in ZnO. 

Although the antisymmetrization procedure removes any artifact 

symmetric about zero delay, there is one caveat to its use. In the 

derivation of the form of the P(x) term in Eq. 2.4, it was inherently 

assumed that the electric field autocorrelation width Ipe(')Î  was much 

longer than the material dephasing time T2. It has been shown [13] that 
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for transform limited pulses if 5T2 > pi(t)f the coherent coupling term 

p(f) may not be symmetric. If this is the case, then data 

antisymmetrization would not remove the artifact. The exact effect of 

T2 " pi(t) is dependent on the pulse shape and other factors, and is 

rather difficult to determine for a particular experimental situation. 

Aside from the coherence spike, the artifacts discussed here manifest 

themselves as gradual deviations from the "true" decay over the length of 

the data scan. Such deviations can arise from purely mechanical sources; 

as mentioned above, the signal strength in pump-probe experiments depends 

critically on the overlap of pump and probe beams in the sample. 

Obviously, any type of movement of the two beams relative to one another 

will cause artificial changes in the amplitude of the signal. As 

discussed above, the beam directions are stabilized by the use of 

retroreflectors, but proper alignment is still important. In particular, 

it is desirable to have the incoming beam to the variable delay be 

parallel to the direction of travel of the translation stage. If these 

are not parallel, the position (although not the direction) of the 

outgoing beam will depend on the delay position as shown in Fig. 2-9. 

Theoretically, such a parallel displacement of the emergent beam would not 

cause a change in the position of the focussed beam spot, but due to 

aperturing on other optical components and lens aberrations, artifacts 

could in practice occur. 

In addition to assuring that the beam spot does not move during the 

experiment, the size of the spot must be independent of the delay position 

as well. The size of the spot can change if the incoming beam to the 

translation stage is convergent or divergent; the spot size at the focus 
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Figure 2-9. Effect of nonparallelicity between translation stage travel 

and incoming beam to retroreflector; note that the position 

of the outgoing beam but not the direction is affected. 
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wg is related to the beam size at the focussing lens by [14] 

"3 - ̂  (2.7) 

Here, f is the focal length of the lens, n is its refractive index, and 31 

is the laser wavelength. The spot size at the focus is therefore 

inversely proportional to the size of the beam at the focussing lens. 

Given a typical laser beam divergence of 1 mrad (full angle), over 10 cm 

of optical delay the beam size would grow by 0.1 mm, a change of -10% for 

the beam sizes used here. In view of Eq. 3, such unchecked beam 

divergence would cause a noticeable deviation in the signal. Therefore, 

it is necessary to adjust the distance between lenses LI and L3 in Fig. 

2-3 for the best possible beam coherence. This may be done by directing 

the output of L3 over a long distance and moving L3 until the beam size is 

the same in the near and far field. 

Some types of artifacts may appear in pump-probe experiments on 

photosynthetic antennae systems which do not occur in simpler systems 

(such as randomly distributed dye molecules). One of the most common is 

singlet-singlet annihilation, which is seen as an intensity-dependent 

absorption decay (i.e., shorter lifetimes at higher laser intensities). 

The mechanism of singlet-singlet annihilation is shown in Fig. 2-10. 

Panel a) shows a domain of four (B)Chl molecules, two of which have become 

photoexcited. Through energy transfer, the excitations may migrate to two 

chromophores in close proximity to one another, as in panel b). Then it 

is possible for molecule 2 to transfer its excitation energy to molecule 

3, which rises to the $2 state. In following with Kasha's rule, molecule 
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Figure 2-10. Mechanism of singlet-singlet annihilation within an energy 

transfer domain, a) Two excitations are initially present 

in the domain; b) the excitations migrate close to one 

another; c) energy transfer to an already excited molecule 

followed by internal conversion reduces the number of 

excitations by one, as in d). 
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3 then undergoes very fast internal conversion to (panel c)). The 

overall process from Fig. 2-lOa to Fig. 2-lOd is the loss of one 

excitation due to the presence of another, and may be summarized as 

* * Y2 * 
(B)Chl + (B)Chl (B)Chl + (B)Chl (2.8) 

The rate constant Y2 the overall two-excitation decay rate, which 

includes contributions from BET across the domain and from the probability 

that annihilation will occur when two excitations meet. (Note that other 

processes are possible as well, such as singlet-triplet annihilation, or 

singlet-singlet annihilation resulting in the loss of both excitations or 

the formation of triplet states; however, the process in Eq. 2.8 is 

usually dominant, especially for very short pulses [15].) For the 

purposes of pump-probe experiments, it is necessary to keep the laser 

pulse energy density low enough that annihilation does not compete with 

the single-excitation decay. The maximum allowable laser pulse energy 

depends on the rate constant 72' which in turn depends in a complicated 

way on several molecular parameters. One of the most important is domain 

size; in general, larger domains will show effects of annihilation at 

lower pulse energies. In addition to molecular parameters, the allowable 

pulse energy depends on experimental parameters such as the size of the 

beam in the sample and the sample optical density at the laser wavelength. 

In practice, one usually checks for these effects by repeating the 

experiment with successively lower laser powers until the observed decay 

no longer changes. It has been shown [16] that annihilation processes 

begin in BChl a-protein at about 10̂  ̂photons/cm̂ ; excitation densities in 
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the studies of Chapters VI, VII, and VIII were <10̂  ̂photons absorbed/cm̂ . 

Another concern in pump-probe experiments on photosynthetic systems is 

the formation of long-lived triplet states in the sample. When using high 

repetition rate lasers, triplet states can accumulate from pulse to pulse 

to eventually become the dominant species. The relevant decay processes 

and their associated rates are shown in Fig. 2-11: the intersystem 

crossing rate k^gg, the phosporescence decay rate kp^, and the Sq 

decay rate kg. If these are known, then a simple calculation can 

determine whether triplets accumulate in the sample. The calculation is 

based on the rate of formation of the triplets; if the rate of formation 

is greater than their rate of decay, then accumulation would occur. The 

rate of formation depends on the number of photons absorbed per 

chromophore per pulse Iĝ s/ the intersystem crossing quantum yield (qj;sc ~ 

kisc/[kf + kjgç] as depicted in Fig. 2-11), and the laser repetition rate 

f̂ . If these satisfy 

labs 9lSC > ̂ ph (2.9) 

then triplet accumulation will occur. Fig. 2-lla shows the usual case 

where the inequality of Eq. 2.9 is not satisfied, and the population of 

triplet states is negligible. Here, the observed decay kĝ g is due to 

Sq»-Sĵ  ground state recovery, as has been assumed above. In Fig. 2-llb, 

however, Eq. 2.9 is satisfied and triplet states are the dominant species. 

In this case, the observed decay may occur in the triplet manifold, rather 

than in the singlet manifold as desired. The ratio of singlet to triplet 

signal in KĜ G also depends on the relative absorption coefficients of SQ 
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kobs=kT 

Figure 2-11. Energy levels and decay rates pertinent to formation of 

triplet states, a) Decay rates are such that triplet states 

do not accumulate in the sample, and transient absorption 

occurs in the singlet manifold; b) decay rates allow triplet 

states to accumulate, and the measured decay is T2«-T2. 
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and at the laser wavelength; however, the triplet absorption 

coefficients for antenna systems are largely unknown. It is unlikely that 

absorption from is stronger than the intense Sq-̂ Ŝ  absorption, but at 

some wavelengths they could become nearly equal. It is difficult to 

determine what the effect on the decay would be for kĝ g = k̂ ; the best 

way to check for such effects would be to vary the laser repetition rate 

over a large range and look for changes in the observed decay. 

When dealing with very long-lived triplet states, it is important to 

take into account the details of the experimental apparatus. For example, 

in our experiments the sample was rotated at 12 Hz. If the radius of the 

circle exposed to the laser beams is -3 mm, then the ratio of exposed area 

to beam spot size is -1200. At 12 Hz rotation, the rate at which new 

sample is exposed would then be -1.5 x 10̂  s~̂ . This rate could easily be 

greater than kp̂  (phosphorescence lifetimes of >1 ms are common vivo 

[17]), and the relevant "rate of decay" of triplets in Eq. 2.9 would then 

be 1.5 X 10̂  s"L, rather than the actual kp̂ . By using large spinning 

radii and a cavity-dumped dye laser, it may be possible to approach the 

regime where each laser pulse impinges upon an area of fresh sample. 
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CHAPTER III. PICOSECOND PUMP-PROBE EXPERIMENTS ON 

SURFACE-ADSORBED DYES: GROUND-STATE RECOVERY OF 

RHODAMINE 640 ON ZNO AND FUSED SILICA 

Introduction 

Solar photochemistry workers have been concerned with the fate of 

electronic excitation in visibly absorbing dyes adsorbed on wide-bandgap 

semiconductors. When used in liquid-junction solar cells, single-crystal 

semiconductors coated with such dyes exhibit low quantum efficiencies 

(<10~̂ ) for conversion of dye-absorbed photons into conduction-band 

electrons [1]. The mechanistic question which arises is whether these low 

quantum yields are a consequence of efficient back-transfer of electrons 

to the dye following electron injection into the semiconductor or whether 

they are due to rapid nonradiative decay of dye excitation into substrate 

surface modes [2], interband excitation in the semiconductor [3], or 

surface states. 

Time-correlated photon counting was recently used [4] to demonstrate 

that the fluorescence lifetime of cresyl violet (CV) separated from a Ti02 

single crystal surface by a variable number of organized arachidic acid 

monolayers depends on the dye-surface separation d for 80Â < d < 509Â in a 

manner which is consistent with a classical electromagnetic theory for 

nonradiative excitation decay in a molecule near a dielectric surface [5]. 

At such large separations, the theory predicts that the excited state 

lifetime depends on the substrate's bulk properties largely through the 

real part n of its refractive index n at the dye fluorescence wavelength. 
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Since both n and d could be characterized for CV above Ti02 at separations 

> 80Â, meaningful comparisons between theory and experimental lifetimes 

were possible at these separations. For directly adsorbed CV (d 5 5Â), a 

controlling parameter in the theoretical lifetime is the imaginary 

(absorptive) part k of n, a quantity whose order of magnitude is uncertain 

[6] at visible wavelengths for many wide-bandgap semiconductors like Ti02. 

Since K and the effective adsorption distance d are unknown for directly 

adsorbed dyê  the ultrafast fluorescence dynamics could not be used to 

infer the nature of competition between electron injection and 

nonradiative decay at such small distances. 

In this work, ground-state recovery is monitored in rhodamine 640 

adsorbed directly onto ZnO using picosecond pump-probe spectroscopy. For 

radiationless mechanisms involving direct decay of state dye into 

ground state dye, the ground state recovery dynamics will be commensurate 

with dye fluorescence profiles [4] observed on semiconductors. 

Populations of mobile charge carriers generated in Ti02 by electron 

injection from a photoexcited adsorbed dye decay over millisecond 

timescales [7], and hence appreciably slower ground-state recovery 

dynamics can be expected if electron injection is an important excited 

state decay route. Ground-state recovery on ZnO is contrasted at several 

coverages with that on X/4 fused silica. Photobleaching recovery on ZnO 

proves to be ultrafast and essentially independent of dye coverage over 

the studied range. The recovery dynamics on silica are considerably 

slower; they accelerate with increased dye coverage, because excited state 

decay on silica is dominated by excitation trapping by dye aggregates 

whose surface number density increases with coverage. Our results support 
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the occurrence of efficient nonradiative dye -* surface excitation decay on 

semiconductors. 

Experimental 

Optically flat (&/4) silica substrates were precleaned with 

chromosulfuric acid, and rendered hydrophobic for homogeneous dye coating 

by treatment with 20% SifCHglgCl solution in CHCI3 followed by rinsing in 

methanol and distilled water. Rhodamine 640 (used as received from 

Exciton) was adsorbed onto silica from aqueous solution by immersing 

substrates for 5-10 min. Single-crystal ZnO substrates cut and polished 

normal to the c-axis (Airtron, Morris Plains, NJ) were inherently 

hydrophobic and were coated similarly. Absorption spectra of aqueous 

rhodamine 640 solutions obtained on a Perkin-Elmer 320 spectrophotometer 

at concentrations higher than 10~% showed, in addition to the monomer 

band near 570 nm, a secondary peak at -540 nm due to dimerization. 

The dimer peak was not resolved at lower concentrations. The monomer peak 

position varied with solution concentration: -572 nm at 10"̂  and 10~% 

and -565 nm at 10"%. Since rhodamine 640 (like rhodamine B) exhibits a 

free carboxyl group, this position shift arises from an acid-base 

equilibrium [8] between protonated and unprotonated dye. This equilibrium 

is mirrored in absorption spectra of rhodamine 640 coatings on silica, 

which closely resemble the aqueous solution spectra apart from spectral 

shifts (̂ max ~ 581 and - 572 nm for silica coated with 10"̂  and 10"®M 

solutions). On ZnO, the monomer peak position (- 576 nm) on surfaces 

coated with solutions over the same concentration range was nearly 



www.manaraa.com

61 

independent of coverage. Acidic and basic rhodamine B exhibit contrasting 

fluorescence lifetimes in ethanol (2.48 vs. 3.01 ns [9]). However, 

ground-state recovery of rhodamine 640 on ZnO proves to be more than an 

order of magnitude faster than its fluorescence decay in water, and the 

recovery dynamics are found to be independent of coverage (following 

section). Hence, the nonradiative decay on ZnO is immaterially influenced 

by the carboxyl acid-base equilibrium. 

Optical densities of coated ZnO and silica surfaces at the dye monomer 

peak wavelength vary nonlinearly with coating solution concentration 

between 10"® and 10"% (Table I). Unlike CV (which dimerizes nearly 

quantitatively in water and on silica [10]), rhodamine 640 exists 

predominantly as monomers on both ZnO and silica, and excitation trapping 

by aggregates is far slower for rhodamine 640 than for CV adsorbed at the 

same coverage. Adsorption measurements such as those reported in Table I 

require caution, because dye adsorption onto coating vessel walls and 

previously coated surfaces can deplete the coating solution concentration 

below its nominal value, particularly at the lower concentrations. For 

this reason, the nominal difference between the minimum and maximum 

coating solution concentrations used in the picosecond transient series on 

both ZnO and silica is a lower limit to the true difference; the nominal 

and true solution concentrations can differ by factors up to -2 at 10"% 

and by less at the higher concentrations. The lowest rhodamine 640 

optical densities used in pump-probe experiments corresponded to <0.1 

monolayer adsorption. 

The synchronously pumped rhodamine 6G laser system has been described 

previously [4,10]; it produced 590 nm pulses with -12 ps fwhm at 96 MHz 
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Table I. Rhodamine 640 adsorption onto ZnO and fused silica 

Coating Solution Monomer Optical 
Surface Concentration, M Density at Ŝ  «- Sq Peak 

Fused Silica 2.0 x 10"̂  0.0017 

4.0 X 10~6 0.0049 

4.0 X lOrS 0.0074 

ZnO 2.0 X icr? 0.0012 

4.0 X 10-6 0.0036 

4.0 X 10-5 0.0105 



www.manaraa.com

63 

repetition rate and -DO mW average power. The vertical laser polarization 

was continuously rotatable using a Fresnel double rhomb; the 

resulting beam was split into orthogonally polarized pump and probe beams 

of comparable intensity using a calcite Glan-Thompson prism. The two 

beams were focussed into Isomet Model 1206C acoustooptic modulators 

operated with -80% modulation depth at 6.5 and 0.5 MHz respectively. 

The pump-probe beam geometry was similar to that of Ippen et al. [11]. 

The probe beam was subjected to a variable delay using a right-angle BK-7 

prism (±30 arc-s) mounted on a Micro Controle OT10050PP computer-

controlled translation stage (0.1 pm/step, 5 cm range). Both beams were 

condensed to -10 pm spot diameter on the dye-coated substrate using a 

common 7.3 cm f.l. precision-optimized achromatic lens. The average 

incident laser power at the surface was -10 mW in each beam. The probe 

beam was detected with an EG&G FOD-100 photodiode, and phase-locked 

single-sideband detection was achieved at 7.0 MHz in a Drake R-7A radio 

receiver which was modified and augmented with auxiliary frequency-mixing 

circuitry to provide flexible modulation frequencies in both beams [12]. 

At the 7.0 MHz multiple-modulation sum frequency, signal detection was 

essentially shot noise-limited. 

Scattered pump light and dye sample photooxidation introduce more 

severe complications in surface experiments than in solution work. When 

parallel pump and probe beam polarizations were used, interference between 

surface-scattered pump light and the probe beam at the photodiode surface 

created a large fluctuating noise signal at 7.0 MHz when the time delay 

between pump and probe pulses was small enough for their profiles to 

overlap. Such a spurious signal can arise from spatial inhomogeneity in 
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photodiode response, which enables the fluctuating interference pattern 

between pump and probe pulses to contribute noise at the sum frequency. 

This noise was largely eliminated with orthogonally polarized beams. 

Effects of adsorbed dye photooxidation were minimized by rotating 10 mm x 

10 mm ZnO or silica substrates at 12 Hz about the surface normal while 

translationally cycling them at 1 Hz over a 2 mm range with the laser beam 

intersection near the sample edge, generating a raster over a 0.4 cm̂  

annular region of the surface. 

Uncoated ZnO and Ti02 substrates exhibited a pulse-limited negative-

going absorptive transient, which was symmetric about t = 0 and resembled 

zero-background autocorrelation traces obtained using a Type I KDP crystal 

rotated 45® about its surface normal from the optimum orientation for SHG 

for either pump or probe polarization. This transient (which is likely 

due to two-photon absorption in ZnO) was small on an absolute scale, but 

it was considerably more intense than the photobleaching transient of dye 

adsorbed at submonolayer coverage (Fig. 3-1). The semiconductor transient 

could be removed by data antisymmetrization [13], but it contributed 

excessive noise to the antisymmetrized optical density transient near zero 

delay. Improved S/N ratios were obtained by coating half of the rotating 

ZnO substrate with dye and by demodulating the resulting 12 Hz signal 

output from the Drake R7A receiver using a Stanford Research Systems SR510 

lock-in amplifier (LIA) for cancellation of the ZnO transient. (This 

procedure was unnecessary on silica, which exhibited no such transient.) 

The LIA output was filtered with -Is time constant and routed through a 

voltage-controlled oscillator to a Canberra Series 30 multichannel 

analyzer (MCA) operating in the multichannel scaling mode with 1 s dwell 
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Figure 3-1. Transient response signal for rhodamine 640 on TiÔ  obtained 

with rastered surface uniformly covered by dye. Negative-

going transient is Ti02 response; positive-going transient 

for t>0 is dye photobleaching. 
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time. Since some dye photooxidation occurred despite sample rastering, 

this dwell time was matched to the 1 Hz raster frequency for signal 

averaging over the annular region (larger transients were exhibited at the 

outer edge of the ring, where more rapid sweeping and hence slower 

photooxidation occurred). The probe pulse delay was translated at 0.5 

ps/s. 

Raw time-resolved optical density profiles were transferred to a DEC 

MINC-23 minicomputer system equipped with Winchester disk drive operating 

in a TSX-Plus multiuser environment. Photooxidation decay caused 

substantial distortion in the profiles; its kinetics were characterized at 

all coverages on rastered ZnO and silica substrates by monitoring the 

real-time dye optical density for fixed 30 ps delay time between pump and 

probe pulses. A typical calibration profile so obtained for rhodamine 640 

adsorbed with -0.009 initial optical density at 581 nm on silica is shown 

in Fig. 3-2a, where photooxidation caused the optical density to decline 

-50% over the 480s sweep time. Such calibration profiles were fitted with 

biexponential decay laws on silica and with triexponential decay laws on 

ZnO using a Marquardt nonlinear least-squares program. Raw time-resolved 

profiles (obtained with probe delay scanned from -66 to +190 ps using 

identically prepared samples) were then normalized to the fitted 

calibration profiles, with the result shown in Fig. 3-2b for the sample 

whose calibration profile is given in Fig. 3-2a. The validity of this 

normalization technique was confirmed by obtaining similar rhodamine 640 

ground-state recovery dynamics on ZnO and silica for both directions of 

probe pulse scanning. 

Normalized transient profiles were antisymmetrized using the method of 
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Figure 3-2. Photooxidation and transient decay curves for rhodamine 640 

on a fused silica substrate, a) Photooxidation decay curve 

for a sample exposed to pump and probe beams with 30 ps 

delay, turned on at t=0. Channel calibration is 1.0 s per 

channel; silica surface is coated with 10"̂  M aqueous dye 

solution. Continuous curve is fitted biexponential, 

0.74exp(-t/1180s) + 0.26exp(-t/148s). b) Transient decay of 

identically prepared sample, normalized to the fitted decay 

in a). 



www.manaraa.com

68 

Engh et al. [13] and deconvoluted from the laser autocorrelation function 

with a nonlinear convolute-and-compare analysis [10] using a biexponential 

decay law as model function for ground-state recovery. 

Results 

Antisymmetrized response functions are shown in Fig. 3-3 for rhodamine 

640 coated onto silica using aqueous solutions with 10"® and 10"% nominal 

concentrations. The continuous curves are discrete convolutions in 

channel n of the laser pulse autocorrelation function x(t) with optimized 

antisymmetrized biexponential decay functions, 

n 
Cn = E x{i)A(n-i) (3.1) 

i=-oo 

with 

A(t) = A]̂ exp{-t/t̂ ) + A26xp(-t/t2) / t > 0 

(3.2) 

= -A]̂ exp(t/t ĵ ) - A2exp(t/t2)/ t < 0 

For t > 15 ps (i.e., positive times beyond the range of the 

autocorrelation function), the antisymmetrized response function coincides 

with the dye photobleaching component of the total response function. The 

ground-state recovery is clearly more rapid on the silica surface with 

higher dye coverage, in consequence of excitation trapping by aggregates 

whose surface number density increases with total dye coverage. This 
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Figure 3-3. Antisynrnietrized response signals for silica coated using 

a) 10~® M and b) 10"̂  M rhodamine 640 solutions. Continuous 

curves are convolutions of laser autocorrelation function 

with optimized biexponential decay law in Eqs. 3.1 and 3.2. 
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behavior qualitatively parallels the coverage dependence of cresyl violet 

fluorescence decay on silica [10]. Since rhodamine 640 monomers are the 

dominant species on the present surfaces, excitation transport typically 

passes from monomer to monomer several times prior to trapping at an 

aggregate. Ground-state recovery therefore generally occurs in a monomer 

other than the photoexcited one. Polarization effects then render the 

response function decays in Fig. 3-3 slower than the true ground-state 

recovery, since excitation transport to monomers with transition moments 

randomly oriented in the azimuthal angle about the surface normal [14] 

increases the mean projection of absorption transition moments along the 

probe pulse polarization when the pump and probe polarizations are 

orthogonal. These effects can be analyzed to extract the trapping 

dynamics on silica. We omit such an analysis here because the silica data 

in Fig. 3-3 are included primarily for contrast with the ground-state 

recovery dynamics on ZnO. 

Antisymmetrized response functions for rhodamine 640 coated onto ZnO 

using 10"®, 3xl0~®, and 10"% solutions are shown in Fig. 3-4. Similar 

dye coverages were obtained on ZnO and silica with coating solution 

concentration over this range (Table I), and the coverages on the first 

and third ZnO surfaces in Fig. 3-4 were comparable to those on the first 

and second silica surfaces in Fig. 3-3, respectively. The ground-state 

recovery on ZnO is markedly faster at all coverages than on silica, with 

antisymmetrized response functions (normalized to 1.0 at the peak observed 

signal in Figs. 3-3 and 3-4) decaying to 0.1 at 200 ps. The decay 

dynamics on ZnO are very similar at all three coverages; the normalized 

response functions in Fig.- 3-4 differ primarily in their S/N ratios, which 
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Figure 3-4. Antisymmetrized response signals for ZnO coated with 

a) 10~® M, b) 3xl0~® M, and c) 10"̂  M rhodamine 640 

solutions. Continuous curves are convolutions of laser 

autocorrelation function with optimized biexponential law. 
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increase with coverage. Optimized biexponential parameters are listed in 

Table II for fits to the antisymmetrized profiles using Eqs. 3.1 and 3.2 

for all studied coverages on silica and ZnO. On silica, the decay is 

dominated by a coverage-dependent long-component lifetime in the hundreds 

of picoseconds; on ZnO, an essentially laser pulse-limited short-component 

lifetime (denoted in Table II) dominates. Since ground-state recovery 

is independent of coverage on ZnO, it occurs primarily at the laser-

excited site, and polarization effects are unimportant in evaluating the 

ground-state recovery dynamics from the data in Fig. 3-4 and Table II. 

The biexponential decay law in Eq. 3.2 does not consider the possibility 

of irreversible photobleaching (e.g., photooxidation and/or electron 

injection) occurring in parallel with ground-state recovery. The quantum 

yield * for irreversible decay is given in terms of the dye response 

function A(t) by * = A(")/A(0). An order-of magnitude upper limit for * 

can be obtained by approximating A(») with the response signal averaged 

over the last 20 channels in Fig. 3-4, and by extrapolating the optimized 

biexponential fit to A(t) back to t = 0 to obtain A(0). This procedure 

yields * 5 0.05, 0.02, and 0.05 for the response signals in Fig. 3-4, 

parts a, b, and c. While these estimates are sensitive to errors in 

fitting the antisymmetrized short-time response function, * is clearly 

small, and rapid ground-state repopulation occurs efficiently on ZnO. 

However, $ is not negligible, as evidenced by the effects of 

photooxidation on the real-time transient decay observed on both ZnO and 

silica. 
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Table II. Biexponential fitting parameters for antisyinmetrized profiles 

Coating Solution 
Surface Concentration, M t̂ lps) A2 

Fused Silica 10"® 0.73 584 0.27 19.7 

10-5 0.62 290 0.38 23.0 

ZnO 10-6 0.66 13.3 0.34 78.6 

3x10-6 0.66 9.3 0.34 61.3 

10-5 0.71 12.5 0.29 87.4 
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Discussion 

The ground-state recovery on ZnO may be compared with fluorescence 

profiles of dyes on ZnO. Photon-counting measurements of time-resolved 

fluorescence from rhodamine 3B adsorbed at low coverage on ZnO [15] 

indicated that the fluorescence decay is nonexponential; a triexponential 

fit to a typical rhodamine 3B/ZnO profile yields the optimized 

fluorescence decay law I(t) = 0.55exp(-t/79ps) + 0.32exp(-t/337 ps) + 

0.13exp(-t/1221 ps). The dominant short-component lifetime of 79 ps is 

probably limited by the -80 ps instrument function width of the photon-

counting apparatusf in which fluorescence photons are detected by a 

microchannel plate phototube; similar short-component lifetimes are 

obtained for rhodamine 3B on TiÔ . Hence, the ground-state recovery of 

rhodamine 640 on ZnO and the fluorescence decay of rhodamine 3B on ZnO are 

commensurate in that the dominant short-component dynamics of both 

measurements are instrument-limited. Since the rate of ultrafast ground-

state recovery in Fig. 3-4 exceeds that of population decay of 

photogenerated charge carriers in semiconductors [7] by several orders of 

magnitude, the present experiments furnish strong evidence of rapid, 

efficient, nonradiative dye -» surface excitation decay. 

With their comparatively low S/N ratios, our pump-probe results do not 

elucidate the actual mechanism of the nonradiative decay. For molecules 

separated from metal and semiconductor surfaces by distances larger than 

-50 A, the excited state decay appears to be well described [2-4] by the 

classical electromagnetic theory [5]. The asymptotic behavior of the 

predicted single-exponential lifetime t for small d is 
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1 ̂  3qX39 . nKd-3 ^̂ .3) 

t 32jf̂ XQ (1 + n2 - K2)2 + 

where q is the fluorescence yield, % is the fluorescence wavelength, Xq is 

the isolated-molecule lifetime, and @ =1(2) for fluorescence transition 

moments parallel (normal) to the surface. This equation predicts 

femtosecond decay for visibly fluorescent dyes directly adsorbed on metals 

like Au (n = 0.22, K = 3.22 at 6200Â [16]) and considerably slower decay 

on ZnO (n = 1.8, K - 5 X 10"̂  at 6000Â [17]) owing to the small absorption 

coefficient of the semiconductor. However, the classical theory breaks 

down [18] at very short distances. Considerable theoretical (but little 

experimental) work has focussed on decay of molecules separated from 

metals by <: 10Â [19,20]. We are not aware of any theory for excitation 

decay in molecules adsorbed directly onto semiconductors. 

The marked nonexponentiality observed in both our pump-probe 

transients and photon-counting profiles is difficult to explain on the 

basis of Eq. 3.3, even by postulating that the dye is adsorbed over a 

distribution of separations d. An alternative decay mechanism is Forster 

dipole-dipole excitation trapping [21] by bulk impurity or surface states 

in the semiconductor. Such trapping will be efficient for states with 

excitation energies which overlap the dye fluorescence spectrum [22] and 

thus lie significantly below the energies of allowed transitions in the 

pure bulk semiconductor. When the trap density greatly exceeds the dye 

number density, averaging of the dipole-dipole transition rate over 

randomly distributed traps leads to the nonexponential decay law [21] 

N(t) = Noexp[-t/xo - o(t/io)d/6] (3.4) 
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where is the isolated-molecule lifetime, a is a dimensionless number 

proportional to the trap density, and d is the dimensionality of the trap 

distribution. Nonlinear least-squares analysis of photon-counting 

profiles from rhodamine 3B on ZnO [15] with variable o and XQ in Eq. 3.4 

yields excellent fits; TQ converges to 2.54 ns and 19.4 ns, respectively 

for d = 2 and 3. Since the first of these lifetimes is commensurate with 

those measured in rhodamine 3B solutions and 19.4 ns is unphysically 

long, the trap distribution appears to resemble a 2-dimensional more than 

a 3-dimensional one. Similar results have been obtained in fluorescence 

profiles from rhodamine 3B on Ti02. The nonexponentiality in the decay 

law of Eq. 3.4 arises from the disorder in the trap distribution, as each 

excited dye molecule experiences a different set of nearest-trap 

distances. 

Identification of the surface states responsible for trapping 

requires independent characterization of the surface composition, which 

is unlikely to have been Zoi,00̂ 1.00 pziof to coating under our 

conditions. Auger measurements of oxygen/metal atomic ratios on Ti02 

surfaces untreated by Ar"*" ion bombardment and heating cycles generally 

yield nonstoichiometric values [23]. The concomitant local variations in 

surface electronic structure may create surface states. Commonly 

adsorbed impurities may provide additional trapping sites. Molecular 

excited-state decay on semiconductors is likely to be sensitive to 

surface treatment, and experiments on surfaces cleaned under ultrahigh-

vacuum conditions may yield results contrasting with those reported here. 
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CHAPTER IV. EXCITATION TRANSPORT IN GLYCEROL SOLUTIONS OF 

RHODAMINE 640: ABSENCE OF ORIENTATIONAL CORRELATION 

Introduction 

Time-resolved fluorescence depolarization has been employed in our 

laboratory as a quantitative dynamic probe of electronic excitation 

transport (EET) among molecules in disordered systems [1-5]. When due 

attention is accorded to artifacts such as self-absorption [6], solvent 

reorganization [3,4], and fluorescence profile distortions arising from 

excitation trapping by aggregates [1,2], this technique can provide a 

sensitive test of current EET theories [7-10]. In our program, molecules 

are excited by weak, linearly polarized laser pulses, and the ensuing 

fluorescence profiles I„(t), Iĵ (t) polarized parallel and perpendicular 

to the laser polarization are accumulated using time-correlated single 

photon counting. For molecules which rotate freely in three dimensions, 

these intensity components are related to the time-dependent probability 

G®(t) that the excitation resides on the laser-excited molecule by 

I„(t) = P(t) [1 + 0.8r(t)GS(t)] 

(4.1) 

Ix(t) = P(t) [1 - 0.4r(t)G8(t)] 

when residual polarization [11] is neglected. (Recent work by Fredrickson 

[12] has shown that the effects of rotational diffusion are described only 

approximately by Eqs. 4.1. The rotational diffusion timescale for dye 

molecules in glycerol is so slow (following section) that minimal error is 
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incurred in the present analysis.) The isotropic decay function P(t) is 

ideally single-exponential in a dilute, homogeneous solution; solvent 

organization normally endows the measured decay in P(t) nonexponential at 

early times [3,4]. The rotational anisotropy function r(t), initialized 

to unity at zero time in Eqs. 4.1, has the single-exponential form 

r{t) = exp(-6Dt) (4.2) 

in the spherical rotor approximation [13] if the absorption and 

fluorescence moments are parallel. We showed that BET in ethylene glycol 

solutions of 3,3'-diethyloxadicarbocyanine iodide (DODCI) is well 

represented for times t < 5T and DODCI concentrations up to -5 mM by the 

two-particle theory of Huber et al. [7], in which 

Gfft) = exp[-C(nt/2t)l/2] (4.3) 

Here T is the intrinsic state lifetime in the absence of transport, and 

C is the dimensionless reduced concentration 

C = fnR̂ P (4.4) 

which depends on the molecule number density p and the Forster parameter 

RQ [14]. At such times and concentrations, the two-particle theory for 

G®(t) essentially coincides with the more complicated (but analytic) GAP 

three-body theory [8] for three-dimensional disordered systems. 

This situation contrasts markedly with the fluorescence depolarization 
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observed for DODCI in glycerol, a solvent frequently used in earlier EET 

experiments [1,14] because its large viscosity (954 cp at 25° C) freezes 

out rotational contributions to depolarization. Significant discrepancies 

emerged between the observed fluorescence depolarization and that 

predicted by the two-particle theory (Eqs. 4.1,4.3) for randomly oriented 

chromophores; these discrepancies increased with DODCI concentration. 

Unlike most alcohols (including ethylene glycol [16]), glycerol at 25® C 

exhibits coherence in its radial correlation function (i.e., crystalline 

ordering) out to distances as large as 25 À [17]. It was hypothesized 

that the rodlike DODCI geometry (Fig. 4-1) facilitated its substitution 

into the glycerol "lattice" in such a way that two DODCI molecules 

separated by distances shorter than the ordered domain size were 

preferentially aligned with parallel transition moments [4]. No 

fluorescence depolarization accompanies EET between such a pair of 

chromophores; this hypothesis is therefore consistent with the fact that 

the apparent reduced concentration parameter C in the observed Green's 

function G®(t) becomes increasingly depressed relative to its true value 

at higher concentrations [3]. The magnitudes of these discrepancies were 

analyzed under the ad hoc assumption that DODCI chromophores separated by 

distances less than an orientational correlation length Rg exhibited 

parallel transition moments, but were uncorrelated for separations R > R̂ . 

The resulting correlation length R̂  - 40 A (comparable to, but somewhat 

larger than the the radial correlation length from x-ray scattering in 

liquid glycerol [17]) also supported orientational correlation as the 

origin of the discrepancies. 

Such orientational correlation requires marked anisotropy in the 
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Figure 4-1. Structures of 3,3'-diethyloxadicarbocyanine iodide (DODCI) 

and rhodamine 640 (rh 640). 
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interactions between chromophore and solvent as well as local ordering in 

the solvent structure. In this work, we have repeated the fluorescence 

depolarization studies for rhodamine 640 (hereafter rh 640) in glycerol. 

While far from spherical, the rh 640 chromophore (Fig. 4-1) is 

considerably less eccentric than DODCI. We correspondingly find that the 

EET in this system conforms closely to Eqs. 4.1, with G®(t) modeled by the 

two-particle function of Eq. 4.3; there is no evidence for orientational 

correlation of rh 640 molecules in glycerol. We have also monitored EET 

in this system through polarized pump-probe spectroscopy [18] in order to 

compare this technique with fluorescence depolarization as a means of 

studying transport. In pump-probe spectroscopy, the sample *- Sq 

transition is excited by a weak, linearly polarized pump pulse; the 

subsequent Sq photobleaching decay is interrogated by a variably 

delayed probe pulse at the same wavelength. The occurrence of EET between 

nonparallel rh 640 molecules does not influence the isotropic part of the 

ground-state recovery, but it affects the polarization of the 

photobleaching transient in a manner which mirrors fluorescence 

depolarization. The optical densities A||(t), Aj_(t) experienced by probe 

pulses polarized parallel and perpendicular to the pump polarization prove 

to be exactly analogous to Eqs. 4.1 for the fluorescence intensity 

components I(i(t), Ij_(t). Pump-probe techniques do not easily match the 

superb data statistics accessible through photon counting [19], but their 

laser pulse-limited time resolution is far superior to our photon counting 

instrument function of -47 ps. Polarized pump-probe spectroscopy is 

therefore preferable to fluorescence depolarization for studying EET in 

green plant antennae, where subpicosecond single-site hopping times have 
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been inferred [20]. Since pump-probe techniques (unlike fluorescence) are 

not inherently state-selective, the present calibration of pump-probe 

techniques against fluorescence depolarization is an essential first step 

in assessing whether artifacts such as triplet-triplet absorption 

influence their applicability to photosynthetic antenna systems. 

Experimental 

The tunable picosecond excitation laser system and time-correlated 

photon counting electronics have been described previously [2-4]. A 

rhodamine 590 dye laser with 3-plate biréfringent filter was synchronously 

pumped by a mode-locked argon ion laser and cavity-dumped at 4.8 MHz to 

generate linearly polarized 570 nm pulses with -7 ps FWHM. Rhodamine 640 

was obtained from Exciton. Emission from glycerol solutions of rh 640 was 

analyzed by a Promaster Spectrum 7 linear polarizer, passed through two 

Schott OG-590 filters, collected with a 10 cm f.l. lens, and focussed 

through a variable rectangular aperture onto a Hamamatsu R1564U 

MicroChannel plate phototube (MCP). 

The rh 640 monomer-dimer equilibrium in glycerol was characterized by 

obtaining rh 640 absorption spectra at several concentrations in this 

solvent. The dimerization equilibrium constant K̂ j = [Mgl/tM]̂ , computed 

from the monomer and dimer absorbances at 580 and 540 nm, depends on the 

values of peak absorption coefficients and ê 33j(M2). The former 

(-1.03 X 10̂  1/mol. cm) was evaluated from a spectrum taken at low 

concentration. According to the simple exciton theory [21], eniax̂ 2̂' lies 

between =̂ 3% (M)and 2ê 3jj,(M). The nominal rh 640 concentrations in our 
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transport experiments ranged from 0.246 to 5.61 mM. In the worst case 

where CmaxM is assumed to be equal to (M̂ ), the total rh 640 

concentration [T] • [M] + and the rh 640 monomer concentration [M] 

are 5.61 and 5.55 mM, respectively, in the most concentrated solutions 

used. Hence, the monomer-dimer equilibrium has minimal effect on [M] for 

rh640 in glycerol, in contrast to DODCI in glycerol [4]. 

The isotropic decay function P(t) was measured at each concentration 

by obtaining a magic-angle profile with the analyzing polarizer aligned 

54.7° from the laser polarization. These were fitted with a biexponential 

decay law using a Marquardt nonlinear least-squares algorithm [22]. The 

isotropic decay is dominated at all concentrations by a long component 

whose lifetime increases by 6% from -3840 ps to 4090 ps between 3.4 pM and 

2.70 mM; this trend, due to self-absorption, resembles the behavior shown 

by rh 6G [1] and DODCI [3,4] in alcohols. Excitation trapping by rh 640 

aggregates abbreviated the lifetimes at the two highest concentrations. 

The short component arises principally from solvent reorganization at 

lower concentrations. In separate experiments, magic-angle profiles were 

obtained at 3.4 pM using a 2 nm bandpass ISA monochromator. The short 

component preexponential factors a2 resulting from biexponential fits to 

these profiles are plotted against transmission wavelength in Fig. 4-2, 

which clearly demonstrates the dynamic spectral shifts accompanying 

solvent reorganization during the first several hundred ps following 

excitation. Maroncelli and Fleming [23] have analyzed the solvation 

dynamics of polar liquids around the asymmetric dye coumarin 153 in terms 

of differential - Sq charge distributions obtained from MNDO 

calculations. Like DODCI, the unperturbed rh 640 chromophore has no 
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biexponential fits of magic-angle fluorescence profiles from 

3.4 pM rh 640 in glycerol, versus detected fluorescence 

wavelength X. 
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dipole moment (Fig. 4-1) and so the nature of the charge shifts 

responsible for solvation must be fundamentally different in our systems. 

The rotational anisotropy function r(t) was determined by obtaining 

the polarized fluorescence profiles I||{t), Ij_(t) at a concentration so low 

(3.4 pM) that negligible transport occurs during the -9 ns photon counting 

time window. These profiles were fitted using Eqs. 4.1 with G®(t) » 1.0 

and r(t) given by Eq. 4.2; the rotational diffusion parameter D in r(t) 

was allowed to float, while the isotropic functions P(t) were expressed as 

biexponential functions with parameters fixed at the values determined 

from the 3.4 pM magic angle profiles. The average values of î ot " 1/6D = 

100.9 ns obtained from three trials exceeded the rh 640 fluorescence 

lifetime by a factor of -25 owing to the large viscosity of glycerol. 

Rotational diffusion therefore contributes little to the total 

fluorescence depolarization for rh 640 at most concentrations in glycerol. 

The measured rotational diffusion time appears to be sensitive to water 

impurity in the glycerol; -20 ns was obtained for rh 640 in glycerol 

which had been exposed to the air for six days. 

The polarized profiles I,,(t), Iĵ (t) obtained at higher concentrations 

were fitted with Eqs. 4.1 in a linked deconvolution which simultaneously 

minimizes the combined Xr both profiles [1,3,4]. The biexponential 

parameters in the isotropic profiles P(t) were held at the values obtained 

from magic-angle profiles, while the rotational diffusion time t̂ ot the 

anisotropy function r(t) was maintained at 100.9 ns. The two-particle 

G®(t) in Eq. 4.3 was used with the intrinsic lifetime t held at 3.85 ns 

(vs. the long-component lifetimes in the isotropic decay at 3.4 pM). The 

only variable parameter in the Green's function G®(t) is therefore the 
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dimensionless reduced concentration C. 

The laser system used in the pump-probe experiments was a passively 

mode-locked dual jet rhodamine 590-DQOCI laser, pumped by a multiline 

argon ion laser with 6W plasma tube. It produced vertically polarized 

605 nm laser pulses with -50mW average power at 125 MHz repetition rate; 

real-time autocorrelation [24] traces exhibited 1.8 ps FWHM. Our pump-

probe beam geometry [25] and multiple modulation detection scheme were 

similar to an apparatus described previously [26,27]. The probe beam 

polarization was fixed at 45° from the laser polarization using a calcite 

Glan-Thompson prism polarizer; the variable pump beam polarization was 

selected with an identical, rotatable polarizer. Both beams were 

focussed by a common 7.3 cm f.l. lens to -10 pm spot diameter at the rh 

640/glycerol solution, which was housed between fused silica optical 

flats separated by a spacer (0.1 mm thick for rh 640 concentrations 

higher than 1.77 mM, 0.4 mm thick for the more dilute solutions). The 

average incident laser power was -5 mW in each beam. 

Pump-probe sweeps were accumulated for ten rh 640 concentrations from 

0.409 to 5.60 mM for parallel, perpendicular, and magic-angle 

polarizations. Convolutions of Eqs. 4.1 with the laser autocorrelation 

function were fitted to the polarized profiles A„(t), Â (t) in a 

procedure analogous to that followed in the fluorescence data analysis. 

The magic-angle profiles were fitted with triexponential decay laws. In 

analyzing the anisotropic profiles A||(t) and Aĵ tt), the rotational 

anisotropy function r(t) was fixed at 1.0 throughout, since the 

rotational period of rh 640 in glycerol encompasses some 400 pump-probe 

scan intervals in our geometry. 
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Figure 4-3, which shows magic-angle fluorescence and pump-probe 

profiles for rh 640/glycerol solutions at concentrations near 0.4 mM, 

illustrates the comparative qualitites of data achieved in the two 

experiments. The fluorescence profile, accumulated with -25,000 counts in 

the peak channel, exhibits noticeably larger S/N than the pump-probe 

transient. The 10 ns photon counting time window enables isotropic decay 

monitoring over -2.5 lifetimes, while only the first 200 ps of the 

photobleaching decay are accessible in a pump-probe experiment using a 5 

cm translation stage. These differences account for the contrasting 

levels of noise exhibited by the final data plots extracted from analyses 

of the polarized fluorescence and pump-probe profiles (cf. Fig. 4-4 in the 

following Section). 

Results and Discussion 

Results of convolute-and-compare analyses of the anisotropic 

fluorescence profiles using Eqs. 4.1 as model functions with the two-

particle Green's function for G®(t) are summarized in Figure 4-4a. The 

optimized reduced concentrations Cp are related to the parameter C which 

enters G®(t) in Eq. 4.3 by Cp = C/0.846; this factor arises from 

orientational averaging of the dipole-dipole transition probability in 

Forster transport [14]. When plotted versus the true rh 640 concentration 

as shown in Fig. 4-4a, these Cp values fall very nearly on a straight 

line, as predicted by Eqs. 4.3 and 4.4. The Forster parameter RQ yielded 

by a linear least-squares fit of these points using Eq. 4.4 is 54.5 A. 

The agreement between our data and the two-particle theory for Gg(t), 
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Figure 4-3. Isotropic decay of rh 640 in glycerol a) Magic-angle 

fluorescence profile from 0.494 mM solution b) magic-angle 

photobleaching decay of 0.409 mM solution. Note the differ­

ence in time windows (-10 ns and -200 ps, respectively). 
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which was developed on the premise that the chromophores are randomly 

oriented, is far closer than for DODCI in glycerol [3,4]. There is no 

evidence for significant orientational correlation between rh 640 

chromophores in glycerol even at the highest concentration studied (-5.6 

mM), at which the most probable nearest-neighbor separation becomes -36 A. 

The chromophore-solvent interactions for rh 640 in glycerol are clearly 

not sufficiently anisotropic for preferential alignment of this dye within 

the ordered domains of the glycerol liquid structure. Our earlier work 

[1] did not exhibit sufficient S/N and freedom from self-absorption to 

establish a similar conclusion for rhodamine 66 in glycerol. 

We show in Fig. 4-4b the optimized Cg parameters from similar 

convolute-and-compare analyses of the anisotropic pump-probe profiles. 

These are displayed in a format which allows direct comparison with the 

analogous plot derived from the fluorescence depolarization experiments, 

Fig. 4-4a. The pump-probe data plot in Fig. 4-4b is considerably the 

noisier of the two, particularly at the lower rh 640 concentrations where 

depolarization is slow. The straight line in Fig. 4-4b corresponds to 

RQ = 50 A; the Forster parameters derived from the fluorescence 

experiments agree to within scatter in the pump-probe data points. The 

principal origin of the noise in Fig. 4-4b is the far narrower time window 

in the pump-probe experiments (200 ps versus 10 ns in Fig. 4-3); the 

depolarization here is monitored only in its earliest stages, where 

differences between the transients A|,(t) and Ax(t) remain subtle. 

Nevertheless, the locus of pump-probe data points for rh 640 concentra­

tions ;̂ 1 mM overlaps closely with the fluorescence data plot in Fig. 

4-4a, indicating that pump-probe techniques offer an equally valid method 
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Figure 4-4. Optimized reduced concentrations Cp versus true rh 640 

monomer concentration, obtained by fitting a) anisotropic 

fluorescence profiles and b) anisotropic pump-probe profiles 

with G®(t) given by the two-particle theory in Eqs. 4,1. 

The error bars show propagated standard deviations based on 

the standard deviations in the anisotropic profiles. 
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for monitoring EET depolarization. The agreement between the fluorescence 

and pump-probe experiments is interesting because the state lifetimes 

of rhodamines in alcohols (-250 ns for rhodamine 66 in air-saturated 

ethanol [28]) are far longer than our 8 ns laser pulse spacing. Our 

605 nm probe wavelength was some 10̂  cm"̂  lower in energy than the 570 nm 

absorption peak for rh 640 in glycerol. At such energies, xanthene dyes 

exhibit triplet-triplet absorption coefficients of -10* 1/mole-cm [29], 

which is comparable to the rh 640 absorption coefficient at the 

wavelength at which photobleaching was monitored. (This probe wavelength 

was mandated by the limited operating regime of the saturably mode-locked 

rhodamine 590-DQOCI laser.) The low intersystem crossing yields in 

rhodamines (typically -10"̂ ), combined with the small ratios (-10̂ ) of 

pulse photons to irradiated molecules, enabled the present pump-probe 

experiment to tolerate a repetition rate as high as 125 MHz. In recent 

experiments, the technique has been applied to EET depolarization in the 

bacteriochlorophyll a-protein complex from Prosthecochloris aestuarii [30] 

and in PS 1-60 enriched photosystem I particles from spinach chloroplasts 

[31]. 
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CHAPTER V. ELECTRONIC ENERGY TRANSPORT IN PHOTOSYNTHETIC SYSTEMS 

Literature Review of BChl a-protein from P. aestuarii 

In Chapter I, the concept of a "photosynthetic unit" consisting of a 

trap (reaction center) and a large set of antenna molecules was 

introduced. The antenna molecules act as both a light-harvesting 

apparatus and excitation energy pathway to the reaction center (RC), where 

photochemistry occurs. When an excitation reaches the reaction center, 

charge separation takes place; the electron donated by the RC is stored to 

be used in the basic reaction of photosynthesis. Much progress has been 

made in determining the structure and dynamics of RCs, particularly in the 

purple photosynthetic bacteria [1]. However, the experiments described in 

this work deal only with excitation energy transfer (EET) between antenna 

molecules, and the reaction center will generally be modeled as a simple 

excitation quencher (deep trap). 

Several models of the photosynthetic unit (PSO) have been proposed, 

often based on a 1-, 2-, or 3-dimensional regular lattice in order to 

simplify mathematical modeling of transport and trapping properties. A 

2-dimensional lattice is often assumed for antenna systems of green plants 

because the pigment molecules are known to lie within the thylakoid 

membrane [2]. Two different types of 2-dimensional lattices are shown in 

Fig. 5-1, where circles represent antenna chlorophyll (Chi) molecules and 

squares represent traps (reaction centers). Fig. 5-la corresponds to a 

"lake" model, in which traps are randomly interspersed in an antenna 

array, while Fig. 5-lb is an example of the "isolated puddles" model, 
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Figure 5-1. Schematic diagrams of a) lake and b) puddle models of 

chromophore organization in photosynthetic antenna systems. 
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where each separate PSU contains a single trap. In addition some models 

have assumed that antenna chromophores nearer to the trap absorb at longer 

wavelength, leading to an energy funnelling effect (Fig. 5-2). This 

downhill transfer (as opposed to near-resonant transfer) has been shown to 

increase trapping rates by as much as a factor of 10 [3]. Sauer's "pebble 

mosaic" model [4] suggests a different type of organization consisting of 

an array of clusters of Chi molecules (Fig. 5-3). The chromophores within 

a cluster are strongly interacting (form exciton states) and Forster 

hopping occurs between clusters. This model is supported by the isolation 

of pigment-protein complexes containing a small number (<7) of closely-

spaced chromophores [5,6]. Very little theoretical work has been done on 

energy transfer between clustered pigments, but similar trapping times 

have been reported for regular-lattice and clustered models with the same 

chromophore density [7]. 

Much is known about the organization of the PSU for the green sulfur 

bacteria Chlorobium limicola and Prosthecochloris aestuarii. (In much of 

the early literature, these organisms are referred to as Chloropseudomonas 

ethylica, which was identified in 1972 as a mixed culture of the green 

sulfur-oxidizing bacterium Chlorobium limicola and a colorless sulfate-

reducing bacterium, Desulfuromonas acetoxidans. However, in 1976 the 

green bacterium of the mixed culture designated strain 2K, which was used 

in Chapter VI, was discovered to be P. aestuarii, not Ç. limicola. The N2 

strain does, however, contain Ç. limicola [8].) Both of the green 

bacteria are members of the Chlorobiaceae group, and because they grow at 

lower depths of lakes and ponds, they have developed extensive light-

harvesting systems. Electron micrographs of thin-section and negative-
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Figure 5-2. Energy levels for near-resonant energy transfer and 

"funnel"-type antenna systems. 
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Figure 5-3. Pebble mosaic model of an antenna system, in which pigments 

are clustered in small groups forming strong interactions. 
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stained P. aestuarii [9] and Ç. limicola [10] show oblong bodies called 

chlorosomes attached to the inside of the cell wall. The chlorosomes 

(formerly called "chlorobium vesicles") vary in size from 100 to 300 nm in 

length and from 50 to 100 nm in width. Based on freeze-fracture 

micrographs (as well as available biochemical and biophysical data) 

Staehelin et al. [11] proposed a model for the chlorosome as shown in Fig. 

5-4a. The chlorosome contains 10-30 rod-shaped elements (-10 nm in 

diameter) of BChl c-protein complex which serve as the primary light-

harvesting apparatus. The BChl ç are very closely spaced, with 12-14 

chromophores per 15 kDa protein [12]. The BChl c-protein rods are most 

likely surrounded by a monogalactolipid layer, which separates the 

cytoplasm from the hydrophobic interior of the chlorosome. These rods are 

separated from the cytoplasmic membrane by a crystalline "baseplate", 

which is clearly seen in the freeze-fracture micrographs [11]. The 

baseplate, which contains a BChl a-protein complex, is -5 nm thick and 

shows a periodicity of -6 nm. This complex will be described in greater 

detail below. The reaction centers (-30 per chlorosome) as well as non­

crystalline BChl a-protein are located in large (-10-14 nm diameter) 

particles embedded in the cytoplasmic membrane. Reaction center particles 

retaining photochemical activity have been isolated [13] with either 75 or 

35 BChl a per RC (-350 kDa and -600 kDa, respectively). The particles are 

comprised largely of BChl a and an as yet unidentified pigment [14]. In 

later work, Gerola and Olson [15] found that there is another BChl a-

protein located in the chlorosome envelope between the BChl ç rods and the 

crystalline baseplate. This small (-5 kDa) protein contains at least 2 

BChl a molecules and apparently functions as an intermediary in electronic 
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Figure 5-4. Photosynthetic apparatus of green sulfur bacteria, a) Mo<iel 

of a chlorosome of Ç. limicola based on freeze-fracture 

micrographs. From ref. [11]. b) Apparent energy transfer 

order, with absorption maximum and relative abundance of each 

complex in terms of number of BChl per reaction center. 
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excitation transfer between BChl c and the baseplate. The apparent 

transfer order for the chlorosome system̂  the absorption maximum of each 

complex and its abundance in terms of number of BChl per reaction center 

are given in Fig. 5-4b. 

The BChl a-protein from the baseplate of P. aestuarii is unusual in 

that it is water-soluble and can therefore be easily separated and 

purified [16]. Furthermore, under proper conditions the protein can be 

crystallized [17]. Using crystals grown by J. M. Olson, Matthews and 

Fenna [18] determined the structure of the complex using x-ray 

crystallography at 2.8 k resolution. The basic unit of the protein is a 

trimer with identical subunits related by a three-fold symmetry axis (Fig. 

5-5). Each subunit consists of a protein "bag" surrounding seven BChl a 

molecules which are held in place by hydrogen bonds to the protein. Five 

of the chromophores also have histidine side chains as the fifth ligand to 

the Mg atom. The x-ray studies yield a molecular weight of 45 kDa per 

subunit (38.6 kDa due to protein, 6.4 kDa for 7 BChl a molecules), in 

agreement with gel electrophoresis measurements [19]. The protein of each 

subunit contains -360 amino acids [20] which form extensive p-sheets and 

protect the hydrophobic BChl core from the solvent. There are extensive 

interactions between the protein chains of different subunits in a trimer; 

this is consistent with observations that the trimer cannot be split into 

subunits without denaturing the protein [19] and supports the belief that 

the trimer exists in vivo. The seven BChl a molecules within a subunit 

have no obvious symmetry, but all lie within 40° of an average plane [18]. 

The nearest-neighbor Mg - Mg separations within a subunit are 11 - 14 A 

[21] and there are extensive contacts among BChl molecules as well as 
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Figure 5-5. BChl a-protein trimer showing three-fold symmetry axis. The 

BChl a chromophores have been excluded for clarity. From 

ref. [18]. 
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between BChl molecules and protein. 

Under slightly different conditions, the protein forms crystals of 

or P63 symmetry [22]. The complete structure determination was done on 

crystals of P63 symmetry, but the former has also been shown to consist of 

trimers [23]. In the P63 crystals, each trimer is related to another by a 

2̂  screw axis (Fig. 5-6). The combination of the screw axis and three­

fold symmetry axes forms large (63 Â diameter) solvent channels which are 

readily seen in electron micrographs of sectioned crystals [24]. Subunits 

related by three-fold axes are separated by -33.1 A (based on the average 

Mg positions) while subunits related by 2^ axes are separated by -61.5 A, 

including 49.3 A (one-half the unit cell dimension) along the c-axis. 

Since the position and orientation of each of the seven BChl a 

molecules within a subunit are known [21], this system provides an 

•excellent opportunity to test models of excitation energy transport. 

Based on the separations of the chromophores, it is expected that the 

molecules will be strongly interacting to form exciton states (see Chapter 

I). Much spectroscopic evidence has been assembled to show that this is 

indeed the case. First, low temperature absorption spectra of the Qy 

region [25-27] show several subbands of unequal magnitude which are 

narrower than that of BChl a in solution. Using fourth and eighth 

derivatives of low temperature absorption spectra, seven peaks have been 

identified in the Qy absorption band [28]. Second, the circular dichroism 

(CD) spectrum [25,26] is conservative (sums to zero over the Qy region) 

and much larger in magnitude than that of monomeric BChl a. Such features 

of CD spectra have been shown to be a consequence of excitonic interaction 

[29]. Third, the low-temperature emission spectrum is a mirror image of 
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Figure 5-6. Orientation of BChl a-protein trimers in crystals of P63 

symmetry (each circle represents one trimer). Shaded trimers 

are displaced from unshaded trimers by 49.3 A perpendicular 
to the page. 
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only the lowest energy absorption subband [30,31], not the entire 

absorption band. This behavior is indicative of very fast transfer to the 

lowest-energy subband, though not necessarily excitonic interaction. 

Finally, the overall width of the Qy absorption band is consistent with 

interacting dipoles 11 - 14 A apart [25]. 

Assuming that all seven BChl a molecules are strongly interacting, it 

should be possible to calculate the position and intensity of the seven 

features of the Qy absorption and CD spectra. Such calculations were 

performed by Pearlstein and Hemenger [32] using simple exciton theory in 

the point monopole [33] approximation and more advanced DGS (degenerate 

ground state) theory [34-36], but with little success. Qualitative 

agreement with experimental spectra was seen only under the assumption 

that the lowest energy transition is Q̂  rather than Qy polarized. This 

assumption is contrary to resonance Raman spectra [37] which support the 

liganding and hydrogen-bonding assignments from x-ray crystallographic 

data [30]. A possible reason for such disagreement is that much larger 

perturbations on the BChl a molecules are present as a consequence of 

their interaction with the protein. For example, the centroid of the 

BChl a Qy band in the protein from P. aestuarii is shifted by 600 cm"̂  

from that in solution [27] as coirç)ared to a maximum exciton interaction of 

250 cm~̂ . An understanding of such spectral shifts, which occur in nearly 

all pigment-protein complexes, would greatly aid theoretical modeling of 

chlorophyll interactions jjn vivo. 

As stated above, it is believed that trimers of BChl a-protein exist 

in vivo and mediate energy transfer from the light-harvesting BChl ç 

complex to the reaction center. In such a role, the orientation of the 
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trimer is crucial in understanding the transfer of energy between 

different pigment-protein complexes. Olson (38] has suggested that the 

trimer three-fold axis makes an angle of -25® with the plane of the 

cytoplasmic membrane, which would explain the pattern seen in freeze-

fracture micrographs [11]. This contrasts with linear dichroism spectra 

of samples oriented in a pressed gel [39] which indicate that the three­

fold axis is approximately perpendicular to the membrane. However, this 

assignment hinges on the assumption that free trimers exist in the gel; 

experiments on electric-field oriented samples [40] indicate that small 

crystallites containing several tens of trimers exist in solution. 

Modeling of Energy Transport in BChl a-protein 

In spite of the failure of exciton theory to correctly predict the 

absorption and CD spectra of the BChl a-protein, it is generally accepted 

that the molecules within a subunit are strongly interacting to form 

exciton states, but there is no strong interaction between molecules in 

different subunits. This view of EET in the BChl a-protein (which is 

essentially the same as Sauer's pebble mosaic model) stems from the fact 

that the maximum interaction energy calculated for molecules in different 

subunits is -27 cm"̂ , as compared to -250 cm"̂  for molecules in the same 

subunit. Under the conditions of this assumption, light absorption into 

one of the seven exciton subbands would be followed by rapid internal 

conversion to the lowest energy exciton state, which could then undergo 

EET to the same state of a nearby trimer. The rate of transfer would then 

depend upon the transition dipole moment direction of the lowest-energy 
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exciton state through the orientation factor k̂ . (Population of higher-

energy exciton states is possible, and is governed by the Boltzmann 

distribution. At room temperature, kT « 209 cm~̂ , and substantial 

population of higher levels is expected. In this case, the factor 

would be a weighted average of the seven Qy levels.) In view of the R~® 

dependence of Fôrster transport, two types of intersubunit transfer are 

most likely to occur as shown in Fig. 5-7. The first type is between 

subunits in the same trimer, such as A -• B or C A, and occur with rate 

Wĵ . The second type is between subunits related by the 2̂  screw axis, 

such as A -» D or B -» H, which have rate ŵ .̂ The ratio of these rates 

*Ab/"ad vary from zero to infinity depending on the transition dipole 

moment direction of the lowest exciton state (or states), which is at 

this point unknown. The purpose of this section is to develop kinetic 

models to predict the observable time-dependent anisotropy function for 

arbitrary ŵ /wĵ  using EET domain sizes up to 27 trimers. 

Calculation of the time-dependent parallel and perpendicular 

absorption probabilities A||(t) and A±(t) can be divided into two distinct 

parts: derivation of the time-dependent population of each subunit and 

the orientation of each subunit with respect to the laser polarization. 

To provide an example of each of the two contributions, consider first 

the simplified case where ŵ  =0 (i.e., the excitation is limited to one 

trimer). The time-dependent population probabilities A(t), B(t), and 

C(t) for subunits A, B, and C are then related by the kinetic equations 

dA 
"dt " 2"AB̂  " "AB̂  - "abC 
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Figure 5-7. Relative orientation of trimers showing transfer types with 

rates Wĵ  and Wjŷ . 
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 ̂ + 2Ŵ B - WagC (5.1) 

= -ŵ A - ŵ B + 2ŵ C 

If we assume that at t=0 subunit A is excited to population Aq then the 

initial conditions are A(0) = Aq, B(0) = C(0) =0. The populations B(t) 

and C(t) then become equivalent by symmetry and the population A(t) will 

be given by A = Aq - 2B (for this discussion of EET the isotropic decay 

will not be considered, as it does not affect derivation of the 

anisotropic components). Under these conditions each of Eqs. 5.1 reduces 

to 

dt " ""AB̂ ô - 3B) (5.2) 

This can be rearranged and integrated 

(5.3) 

which yields 

B(t) = C(t) = ̂  [1 - exp(-3ŵ t) ] (5.4) 

and therefore 
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A(t) = ̂  Il + 2exp(-3ŵ t)] (5.5) 

The contribution of each of these populations to the parallel and 

perpendicular absorption depends on the orientation of its transition 

dipole moment p with respect to the laser polarization. For light 

polarized along the laboratory x-axis, the absorption of subunit A is 

proportional to (p-z) ̂ Similar factors can be written for subunit s 

B and C and for y-polarization. If we assign the pump polarization as the 

x-direction and the perpendicular probe polarization as the y-direction, 

the transient absorption expressions are 

»,|(t) - ll̂ A(t) + 

(5.6) 

Ai(t) - + 44'®"' 

Recall that subunit A is excited by x-polarized pump light at t=0; 

therefore each term carries a coefficient to account for the 

probability of this occurrence. Other (such as p̂ y) factors correspond 

to the absorption of probe light. In order for Eqs. 5.6 to be useful, the 

transition moment projections must be written in terms of the 

crystallographic a,b,c axes. The three components of the transition 

moment in subunit A can be assigned a, p, y along the a, b, c axes. 

The transition moments rg and for subunits B and C are then rotations 

by 120' and 240° about the c-axis: 
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a 

P 
ai 

bl 

L Ï J L c 

-o/2 - V3P/2 ' ̂2 ' 
V3'a/2 - p/2 

= 
b2 

y c 

-o/2 + V3P/2 • ' =3 ' 

-V3a/2 - p/2 
= 

b3 

y c 

{5.7a) 

(5.7b) 

(5.7c) 

The notation â  ̂ b̂ , c has been introduced for compactness of expressions 

to appear below; the subscripts 1, 2, 3 will be used to refer to subunits 

A, B, C. The relationship between the laboratory-fixed x,y,z coordinate 

system and the crystallite a,b,c axes may be taken into account by the 

Euler angles [41]. The transformation for the coordinate system x' to the 

coordinate system x can be represented in matrix notation as 

X = X at' (5.8) 

For the current purpose, x' represents the trimer-fixed a,b,c axes and x 

is the laboratory x,y,z frame. The Euler angles 8, % give the rotation 

of the a,bfC axes with respect to the x,y,z set as shown in Fig. 5-8. 

With the angles so defined, the transformation matrix X is 

cos*co8% - sinxcosOsin* cos%sin$ + sin%co88cos$ sin%sine 

-sin%cos* - cos%cos8sin$ -sinxsin* + co8%co88co8$ co8%8in8 

sine sin* -sin8 cos* cos8 

(5.9) 
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Figure 5-8. Definition of Euler angles 0, and % relating laboratory-

fixed x,y,z axes and trimer-fixed a,b,c axes. 
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Eq. 5.8 can then be used to transform the vectors of Eqs. 5.5 as 

V 

(5.10) 

If the X matrix is denoted as 

x̂a x̂b x̂c 

X = 
ŷa ŷb ŷc 

. ̂za ẑb ẑc 

(5.11) 

then using the â , b̂ , c notation from Eq. 5.7, the first of Eqs. 5.10 can 

be expanded as 

t-Ay • lya*l+ Vl ̂ '•yc"! 

(5.12) 

Similar expressions can be written for subunits B and C by changing to 

subscript 2 and 3, respectively, on the right-hand aide of Eq. 5.12. The 

z-component is not listed since it is not required by Eq. 5.6 

(polarization along the z-axis is not detected). Next, terms such as 

Ï̂ Ax̂ Bx in̂ st be generated from Eq. 5.12 by polynomial multiplication. The 

expansion of ufxV'Bx contains 21 terms 
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Plsfl: - + Zl̂ af̂ baiazblbg + (*1̂ 2+32*1)̂  

+ l2al:cc'(ai+a2)' + :l̂ al̂ Kf'ai=2 + 

'"' 2\xb&xc° bib2 + ̂ xâ xb̂ l̂ Z (*1̂ 2+82̂ 1) + ̂ ^L*'xc°̂ l®2 ̂ ®l''"®2̂  

•*" 2kxb̂ xcGbib2(bi+b2) *̂'L x̂b*'xc°̂ ®l''"®2̂  <®1̂ 2'''®2̂ 1̂  

+ 2̂ L̂ xb\ĉ l̂ 2(bi+b2) + 21x3̂ x0=̂  (*1+32) 

•*• 2&xâ xbblb2(*lb2+*2bl) 

•*• 2&xâ xb̂ xcGbib2(*l+B2) + 2&xa&̂ b̂ xc°(bi+b2)(*ib2+B2bi) 

+ 2̂ xâ xb̂ L°̂  (ĥ 2+̂ 2̂ l) + 21̂ X3/ (b̂ +bg) (5.13) 

To account for the random orientation of BChl a-protein crystallites in 

solution, Eq. 5.13 (as well as each of the other orientational 

co e f f i c i e n t s )  m u s t  b e  i n t e g r a t e d  o v e r  a l l  p o s s i b l e  B u l e r  a n g l e s  e ,  % .  

For example, the first term of Eq. 5.13 gives 

<&xa> 

4 (*" ĉ " r̂ " 4 
<&xa> = A^a sine de d* d% (5.14) 

Jo Jo Jq 

/•n j»2ji (•2n 
(cosecosx - sin%cosesin*)4 sine de d* d% 

Jo Jo Jo 

<&xa> = 1/5 

Here, the angle brackets indicate a quantity averaged over all possible 

orientations. This integration must be repeated for the remaining 20 

terms of Eq. 5.13; fortunately, the last 12 terms (all those containing 
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odd powers) integrate to zero. The first 9 terms are non-zero when 

integrated and yield the results 

= I 
'•̂ xâ xb̂  " x̂b̂ xĉ  

1 
15 

(5.15a) 

(5.15b) 

Equation 5.13 therefore reduces to 

- h44 * + 2 laiâ bib,, 

+ Zlcfâ ag + cf(bi + bg)̂  + 2ĉ bĵ b2 + cftâ  + â )̂ ] (5.16) 

Each of the â , b̂ , c in Eq. 5.16 are then replaced by their definition in 

terms-of o, P, y as given in Eq. 5.7. When simplified, this gives 

<pLi4x̂  - Ï5II.2 + pZ): + z?*] (5.17) 

The subscript 2 in Eq. 5.16 can be replaced by a 1 and a 3 to yield \x̂  

and P̂ Pcx (recall the numbering scheme introduced in Eq. 5.7). These are 

expanded in terms of o, p, y as above to give 

•̂(ô  + +  y Z j Z  

Y§[(â  + p2)2 + 2y2] 

(5.18) 
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Since the oscillator strength of each subunit is identical (by symmetry), 

the transition dipole moments may be written as unit vectors, i.e., 

+ yZ = 1. Then, using ô  + p̂  = l- ŷ , the dipole moment 

projections of Eqs. 5.18 become 

- I 
(5.19) 

Eq. 5.19, along with the time-dependent population probabilities of Eqs. 

5.4 and 5.5, can be substituted into Eq. 5.6 to give the transient 

absorption expected for parallel pump and probe polarization 

A||(t) = (1 + 2exp(-3ŵ t) + (1-272+3̂ 4)11 _ exp(-3ŵ t) ) j  (5. 20) 

or 

A|i(t) = |§[(2-2y2+3y4) + {l+2y2-3y 4) gxp (-Sŵ t) j (5.21) 

The time-dependent transient absorption for perpendicular pump and 

probe polarization can be calculated in a manner exactly analogous to the 

parallel contribution. The counterpart of Eq. 5.13, the expansion of 

nlxV'By contains 46 terms since no collection of terms is possible. 

Twelve of these terms are non-zero when integrated over all possible *, 0, 

and %; their coefficients are 
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<\%afya> " <t2blyb> " " IF (5'22) 

- " (lyb̂ xcf " il (5.23) 

«Scctyclsblyb» = <̂ xĉ ô xâ a> = = "35 <5.24) 

These reduce the 46-term expansion to 

' ii[ »l4 + "̂ 2 + =" - 2<=̂ <ĥ 2 + V2' - 2ĥ 2''l'=2 + 

2(a2b2 + agbj) + 2c2(a2 + â  + bj + b̂ )] (5.25) 

This can be expressed in terms of a, p, y from Eq. 5.7 as before to give 

= 35 [ 5 ̂ 3,2 - §,< ] (5.26) 

using = 1. Replacement of subscript 2 in Eq. 5.25 by 1 and 3 

gives <P̂ PAy> and <P̂ Pcy>f respectively 

<WAy" = 13 

(5.27) 

<PI[Pcy> = IS [ 2 + 37^ - If' ] 
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These relations along with the population probabilities A(t), B(t) are 

inserted into the Aj_(t) expression in Eq. 5.6 to give 

Al(t) = |§[1 + 2exp(-3wĵ t) + (| + 3̂ 2 - |y4) (1 - exp(-3ŵ t))] 

(5.28) 

= f§t(| + 3if2 - |y4) + (-| -2y2 + 

Both of Eqs. 5.21 and 5.28, the expressions for A||(t) and Aĵ (t), have 

a time-dependent term and a time-independent term, and are of the same 

form as Eqs. 1.33 if P(t) = AQ/3 (recall that the isotropic decay has been 

excluded). Also, the quantity 2A|,+ is a constant (independent of both 

t and y) showing that the magic angle of 54.7* is valid for this system. 

As expected, the time dependence disappears for y =1; in this limit the 

transition dipoles of subunits A, B, and C are parallel and no 

depolarization will be observed. With the anisotropy defined as 

2.5 (A„- Aj_)/ (2A_l + A||), the residual anisotropy a as t » can be written 

in terms of y as 

a = ̂ (3̂ 2 - 1)2 (5.29) 

In general, the anisotropy (see Eqs. 1.33) can be written in the form of 

G®(t) = (l-a)exp(-t/ T )  + a (5.30) 

where a is defined as above and t = (3wĵ )'̂ . 
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It is now desirable to expand the calculation to the more general case 

*AD ̂  order to write kinetic equations, a finite domain size of EET 

must now be assumed. Consider first two trimers ABC and DBF arranged as 

in Fig. 5-7. If A is again the initially excited subunit (A(0) = Aq, all 

other terms initialized to zero), symmetry demands that B(t) = C{t) and 

E(t) = F(t). There are then four unique populations A(t), B(t), D(t), and 

E(t) which are linked by the set of differential equations 

dA 
'dt ^̂ AB̂  " 2"ab® + "ad̂  - (5.31a) 

~ ~"AB̂  "AB® (5.31b) 

~ ""AD̂  •*" "̂AB̂  ÂD̂  " ̂ "AB̂  (5.31c) 

~ ""AB̂  "AB® (5.31d) 

Unlike the single-trimer calculation these cannot be reduced to a single 

variable in a single differential equation. It is then advantageous to 

take the Laplace transform of each of Eqs. 5.31, which gives 

-sA + AQ = (2ŵ  + WJ^)A - 2wĵ B - ŵ YJD (5.32a) 

-SB = -ŵ A + ŵ B (5.32b) 

-3D = -ŵ A + (2Wĵ  + ŵ )D - 2Wĵ E (5.32c) 

-sE = -Wĵ D + Wĵ E (5.32d) 

where s is the Laplace transform variable and bold type denotes a 

transformed function. This set of linear equations can be rewritten in 
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matrix form as 

0 

0 

0 

ZWAB+WAD+S 

-"AB 
""AD 
0 

-2"AB 

Wab+S 

0 

0 

""AD 
0 

ZwAB+WAD+s 

""AB 

0 

0 

"ZWAB 

-WAB+s. 

• A " 

B 

D 

E 

(5.33) 

Since this matrix equation is of the form 

b = M z (5.34) 

the solution is obtained by inverting the 4x4 matrix 

X = M"̂ b (5.35) 

Because only one term of b is nonzero, the multiplication is simple 

A = (M-L)II AQ 

B = (MRL)I2 AO 

(5.36) 
D = (M-1)I3 AQ 

K = {vrhu\ 

In practice, a value of t (and therefore s) was chosen, the matrix 

inverted numerically by Gauss-Jordan method, and the inverse Laplace 

transforms taken using the Stehfest algorithm [42]. The four population 

probabilities A(t), B(t), D(t), E(t) were traced as a function of time by 
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choosing successive values of t. 

With the population probabilities (numerically) known, the 

orientational factors must be calculated. With six subunits now 

involved, the transient absorption expressions become 

(5.37a) 

Ax(t) - + <"14 + 44'®"' + 

(5.37b) 

The terms <plxPix + pLps8x>/ <pLply>' and <p̂ piy + p̂ p§y> are 

the same as given earlier (Eqs. 5.19, 5.22, 5.23, 5.24); the others must 

now be determined. Since subunits A, B, C are related to subunits D, E, F 

by 180® rotation about the c-axis, the transition moment directions are 

given by 

-a 34 
= -P =s b4 (5.38a) 

. Y . c 

a/2 + V3P/2' 

->/3o/2 + p/2 

1 

35 

b5 

c 

(5.38b) 

a/2 - #/2' 

/3a/2 + p/2 

y 

36 

be 

c 

(5.38c) 
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The rotational averaging is performed exactly as before; for example, 

<p|3jPQy> is generated from Eq. 5.16 by replacing subscript 2 with 

subscript 4, then replacing â , b̂ , and c with their a, p, 7 expressions 

and simplifying. This is repeated for subunits E and F with the result 

- 15(3 - 8,2 + 8,4) (5.39a) 

- 35" + ̂ 1' * I5-3»' 

The process is identical for y-polarization probe light using Eq. 5.25, 

giving the expressions 

= ïfd + 4Y2 - 4̂ 4) (5.40a) 

- 3; <2 - (5-«b) 

These expressions are then combined with the time-dependent populations as 

in Eq. 5.37 and the transient absorptions A,, and Aĵ  are calculated for a 

given value of t and y . Fig. 5-9 shows the effect of including A -» D 

transfer in the calculation by plotting A||(t) and Aĵ (t) for = 1, 

"ad ® (one-trimer calculation) and ŵ  = ŵ  = 1 (two trimers) for 

y = 0.9. Note that the convergence is faster for the latter case since 

there are three pathways for the depopulation of subunit A (A-»B, A-»C, A-®) 

as compared to two pathways when ŵ  = 0 (A-»B, A-*C) . 

In principle, the method used for the two-trimer calculation could be 

extended to arbitrary EET domain sizes for BChl a-protein crystallites. 
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1.0 

< 
z 
(3 
CO 

0.0 1.5 0.5 1.0 

TIME 

Figure 5-9. Plot of A||{t) and A_L(t) vs. time showing the effect of 

including A -» D transport in calculations. The slower curves 

are for ŵ ĝ = 1, ŵ  = 0; faster depolarization is seen when 

ÂB = "AD = 1' 
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In practice, the domain size is limited only by available computer time to 

perform the matrix inversion and inverse Laplace transform for large 

numbers of variables. Increasing the domain size is relatively simple 

because there are only six unique subunit orientations in the BChl a-

protein crystal, so no additional orientational terms need be calculated. 

For solutions containing crystallites of BChl a-protein, the two-

trimer calculation, although useful for demonstration, is arguably 

invalid. This is because subunits A and D lie along a 2̂  screw axis; 

therefore, subunit A is equidistant from two subunits which could be 

designated D, one 49.8 A above the plane of the ABC trimer (along the c-

axis) and one 49.8 A below the plane. Rather than considering two 

trimers, then, three should be included. The subunits of these trimers 

are labelled ABC, and D2E2F2. Subunits sharing the same letter 

are related by translation by 1 unit cell (98.6 A) along the c-axis. In 

this three-trimer model, subunits (D-ĵ ,D2) and (Ê , E2, F̂ , F2) are 

equivalent by symmetry, so no additional variables for population 

probability are required. The modification of the kinetic equations 

result in the new Laplace transform matrix equation 

Ao '2wab+2WAD+3 -2ŵ  -2ŵ  0 ' A • 

0 -«AB "AB+s 0 0 B 

0 -WAD 0 2Ŵ +Wĵ +S -2WĴ B D 
(5.41) 

0 

CO 

} 1
 

0
 

0
 E 

which is solved numerically as before, and populations obtained through 

inverse Laplace transformation. 

Other models considered include domain sizes of 7 trimers and 27 
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trimers. Included in the 7-triiner calculation were subunit3 A-L in Fig. 

5-10 (enclosed by a dashed line) and two "levels" for subunits D-L, which 

are shaded. If subunit A is initially excited, by symmetry the time-

dependent populations must follow 

B = C 

Di = D2 

~ ~ ̂ 1 ™ ̂ 2 

®1 ~ ~ ̂ 1 ~ 2̂ 

12 " 12 " " ̂2 ~ ̂ 1 ~ ̂ 2 ~ ̂1 ~ 1*2 

There are therefore six independent populations. A, B, D, E, G, and I, and 

the Laplace transform matrix equation will be 

Ao 2wab+2WĴ  +
 

CO
 1 ro
 i "2"AD 0 0 0 ' A • 

0 ""AB "AB+2WAD+S 0 0 -2ŵ  0 B 

0 -"AD 0 2"AB+"AD+9 ~2WAB ® 0 D 

0 0 0 ""AB WAB+S 0 0 E 

0 0 -"AD 0 0 2wĵ +wĵ +s "2"AB G 

0 0 0 0 0 -"AB 

CO 1
 I 

(5.43) 

As mentioned above, only six distinct orientations exist in BChl a-protein 

crystals. In the 7-trimer model, the following sets of trimers share the 

same orientation; (Dĵ , D2, K2, Ĵ , J2) ; G2, F̂ , F2, L̂ , L2) ; and 

(Hĵ , H2, B̂ , E2, 1%, I2) • Then, knowing the population and orientation of 

each subunit the transient absorption probabilities are calculated 

numerically with an expression analogous to Eq. 5.37, 
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Figure 5-10. Schematic of crystalline aggregate of BChl a-protein trimers 

showing lettering scheme used in multiple trimer 

calculations, a) View down along c axis; shaded subunits are 

displaced by ±49.6 A along the c axis, b) View 

perpendicular to the c axis of A and D subunits only, showing 

numbering according to c axis displacement. 
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The 27-trimer model includes each of the subunits pictured in Fig. 

5-10, with 2 levels of shaded subunits and 3 levels of unshaded subunits 

considered. The subscript numbering assignment is shown in Fig. 5-lOb. 

The 81 subunits reduce to 16 variables based on the following equivalences 

from the crystal symmetry 

H 

Bl Cl • 

2̂ h 

B2 H 
= 
C2 = C3 

Dl 02 

El E2 Fl = F2 

Gl 
= 
®2 «1 = H2 

II l2 
= 
Jl = J2 = Ki = K2 = Li = ̂ 2 

Ni «2 

Ol Pi 
= 
Qi = Ri 

2̂ 
= 
N2 

= 
M3 = N3 

02 
= 
O3 

= 
P2 = P3 = O2 = Q3 = R2 = R3 

Si 
= 
Tl 

= 

M = @2 

1̂ 
= 
Vl «1 = Xi = ̂ 1 = h = Il = "1 

S2 T2 
= 

2̂ ~ ®2 ~ S3 = T3 = A3 = »3 

"2 
= 
V2 

= 
«2 = X2 = Y2 = Z2 = E2 = "2 

= ) = = ) = W3 = = X3 = Y3 = = Z3 = = Ï3 

If we assume that subunit is initially excited then the 16 independent 

variables (listed on the far left of the preceding equations) are linked 
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by the Laplace transformed differential equations 

+ Ao = {2ŵ  + 2wjyj)A2 - ZWĵ B̂  - Zŵ D̂  (5.44a) 

-sBj (5.44b) 

-SA2 ~ "2WAB®2 ÂD)̂ 2 " *AD®1 (5.44c) 

-s®2 ~ ""AB̂ 2 ("AB "AD)®2 " ̂AD̂ l (5.44d) 

-sDj = ""AD̂ I " "AD̂ 2 (̂ "AB 2Ŵ )DI - 2"AB®I (5.44e) 

-sEj "AB®1 ("AB "̂Ao) ̂1 " "AD̂ I " "AD*2 (5.44f) 

1 CO
 

"AD®! ~ "AD®2 (̂ ÂB 2WAD)®1 "" 2WAB̂ 1 (5.44g) 

1 CO
 

- ""AB®1 + ("AB + 2wjyj)Ii - WjyjOi - Wjyj02 (5.44h) 

-sN̂  ~ "2"AD®1 (̂ "AB 2WAD)NI - Zwĵ gSĵ  (5.44i) 

1 CO
 

= ~2WAD̂ 1 * (̂ "AB 2ŵ )0i - 2WĴ QUI (5.44]) 

-SN2 ~ ""AD®1 (̂ "AB "AD) *2 " 2W;̂ S2 . (5.44k) 

1 CO
 

= -"AD̂ l (̂ "AB + "AD)°2 " 2WAB®2 (5.441) 

1 CO
 

~ ""AB̂ Î "AB̂ I (5.44m) 

-sÛ  == ""AB̂ I + "AB̂ I (5.44n) 

-sS2 = ""AB*2 + "AB®2 (5.440) 

-SO2 = ~"AB®2 + "AB®2 (5.44p) 

The 16x16 matrix is then formed from these equations in a manner exactly 

analogous to that for the 2-trimer model discussed above. Due to 

restrictions of space, it is not written explicitly here. The 

corresponding population as a function of time is then obtained using 

matrix inversion and inverse Laplace transforms exactly as before. 

Again, many trimers share the same orientation. Table I shows the 

grouping according to orientation along with orientational terms for each 
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Table I. Orientational grouping for 27-trimer calculation 

Group Subunits i 

1 1/5 1/15 Ai'Pi'Oi'Si,Ui,*i,ni 1,2,3 

2 (1-2y2+3Ŷ )/10 (7+6r2-9Y4)/60 Bi,Ci,Ni,Mi,Oi,Ri,Ti, 1,2,3 
Vi,Wi,Xi,Yi,Zi,Ai,Ii 

3 (3-8Y2+8Ŷ )/15 (l+4Y2-4ŷ )/15 Di,Ji,Ki 1,2 

4 (3+2y2+Y4)/io {7-2y2-Y4)/60 Ei,Fi,Gi,Hi,Ii,Li 1,2 
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group for parallel (<P̂ P2%>) and perpendicular (<P̂ P?y>) polarizations. 

Note that although there are six unique orientations in the BChl a-

protein crystal, there are only 4 orientational groups. This is because 

subunit pairs such as B,C and B,F share the same orientational terms 

although they are differently oriented (see Eqs. 5.19 and 5.40b). 

Literature Review of Photosystem I 

The introduction in Chapter I outlined briefly the experiments of 

Emerson and Arnold, in which they deduced that ~2400 Chi molecules 

interact in the evolution of one molecule of O2. In order to relate this 

result to the size of the photosynthetic unit, it was necessary to 

determine the minimum number of photons required to produce a molecule of 

O2. The basic reaction of photosynthesis, H2O + CO2 -» (CH2O) + O2, is a 

4-electron exchange; the discovery that there are two photosystems which 

act in series [43] makes oxygen evolution an 8-photon event. This 

implies an overall size of ~300 Chi for the photosynthetic unit of green 

plants and algae. 

Green plants and algae differ from photosynthetic bacteria in that 

they contain two different types of reaction centers (one in each 

photosystem), as well as in their ability to produce oxygen. The two 

photosystems, designated photosystem (PS) I and PS II, act in series 

through a complex set of electron and hydrogen carriers. PS II uses 

excitation energy from light absorption to produce a strong oxidant which 

is able to split electrons from water, while PS I generates a strong 

reductant which is eventually used to reduce CO2. Each photosystem is 
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associated with its own set of antenna, and they are in general located 

in different areas of the chloroplast; PS I is associated with the stroma 

lamellae region, while PS II is located in the stacked granal region. 

Several groups have studied the excitation dynamics in whole 

chloroplasts [44-50] by time-resolved fluorescence techniques. The 

excitation decay in all cases is highly nonexponential and faster than in 

monomeric Chi due to trapping at reaction centers. The experimental 

fluorescence decay is fit to a sum of exponentials with each component 

assigned to PS I or PS II. Due to the complexity of the photosynthetic 

apparatus, this procedure has a considerable margin of error. One of the 

major problems is that it is difficult to experimentally resolve multiple 

component decays in which the lifetimes are of the same order of 

magnitude [51], even with the high data quality available with single 

photon counting. The shape of the decay could also be affected by 

"spillover", where excess excitation energy in PS II antenna can be 

transferred to PS I [49,52], In order to improve the ability to resolve 

complex decays, some groups have used global fitting techniques, in which 

a series of fluorescence decays collected at various emission wavelengths 

are fit simultaneously [49]. The assumption is that the observed 

lifetimes are independent of emission wavelength; only the pre-

exponential factors change. In effect, this constitutes a mapping of the 

fluorescence intensity in a two-dimensional time-wavelength space. A 

related technique is the collection of time-resolved fluorescence spectra 

[46]. With this method, one is able to follow the appearance or 

disappearance of different fluorescence bands, and therefore the transfer 

of excitation energy between pigments responsible for each band. 
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It is also common to measure fluorescence parameters with the sample 

at low (cryogenic) temperatures. This has the effect of sharpening 

absorption and fluorescence bands and (sometimes) of slowing the rate of 

BET. The latter effect can be explained on the basis of the spectral 

overlap integral in Eq. 1.27; if the spectral bands are sharpened, then 

the overlap would be expected to decrease. An exception could be the 

situation of downhill transfer; this process requires only the emission 

of a phonon, and could be independent of temperature. A detailed 

experimental investigation of the temperature dependence of EET between 

molecules relevant to photosynthetic antennae has not been undertaken. 

Each of the above techniques are useful in obtaining data on 

excitation dynamics in chloroplasts, but assignment of each component of 

the complex decay to PS I or PS II remains as a major problem. Toward 

that end, it is desireable to measure the fluorescence decay of the two 

photosystems separately. (This is particularly true in the case of PS I, 

since the quantum yield of fluorescence in PS II is much higher [53].) 

However, the thylakoid proteins are highly hydrophobic, which makes 

extraction difficult and the extraction conditions rather harsh. Major 

Chi complexes separated from the thylakoid with various detergent 

solutions fall into three major groups: 1) Chl-protein complexes 

containing the PS I reaction center and associated antenna, 2) Chl-

protein complexes containing PS II reaction center and its antenna, and 

3) light-harvesting chlorophyll (LHC) protein complexes with molar ratios 

of Chi a/Chl b of ~3. 

Photosystem I complexes isolated by varying techniques have yielded a 

wide array of different preparations; the most common of these have been 
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summarized by Dunahay and Staehelin [54]. Many of the complexes differ 

only in the presence or absence of polypeptides in the 8-25 kD range 

which do not bind Chi and are likely associated with secondary electron 

acceptors; all photosystem I preparations contain P700, the primary 

electron donor of PS I. Depending on the separation method, complexes 

can be isolated with various antenna sizes as measured by the total 

number of Chi per P700. The "native" PS I particle has often been 

considered as containing ~110 Chl/P700 [55], with about half the Chi 

contained in LHC la (-'23-24 kD) and LHC lb (-20-21 kD) proteins, which 

have the characteristic LHC Chi a/b ratio of ~3. With a selective choice 

of detergent, the LHC proteins can be stripped away, leaving a PS 1-65 

complex. This preparation contains no Chi b, and the remaining Chi a and 

P700 are bound to 82-83 kD proteins; it retains full photochemical 

activity. Further treatment produces a preparation with 40 Chi a/P700, 

often called CP I. This is the most stable preparation [56], which 

retains photochemical activity even in the presence of sodium dodecyl 

sulfate (SDS), a usually denaturing detergent. In the effort to isolate 

the PS I reaction center, still smaller particles with ~10 Chi a/P700 

have been isolated through the use of ether extraction [57]. In 

particles of this size, it is unclear what fraction of the remaining Chi 

a is contained in the reaction center, and how many molecules (if any) 

are antenna Chi. 

It is reasonable to expect that the successive extraction procedures 

applied to the "native" particle each remove a particular protein 

component. The nomenclature that has developed is that the "peripheral 

antennae" are removed when the particle size is reduced from 110 to 65 
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Chi; reduction from 65 to 40 Chl/P700 removes the "internal antennae", 

leaving the "core antennae" intact. It is interesting to note that if 

the reaction center polypeptide is considered as containing 15 Chl/P700 

(such a particle has been isolated [58]), then each antenna group 

contains ~25 Chi or a multiple thereof. 

In addition to these common particle sizes, PS I preparations have 

been made with varying Chl/P700 ratios of ~20 to 55 [59]. If the 

structure of the PS I antennae were similar to that of the BChl a-protein 

from P. aestuarii, such variable antenna size would be difficult to 

explain; the size would be expected to step in increments of 21, 

However, ultraviolet CD spectra indicate that while the protein of P. 

aestuarii forms antiparallel p layers which enclose the chromophores 

[18], the polypeptides in PS I antennae contain parallel a/p domains 

[60]. The Chi chromophores are probably located between or on the 

exterior of such domains, at least partially exposed to the solvent. 

This is consistent with the severely hydrophobic nature of the PS I 

proteins, and allows one to visualize how progressively harsher detergent 

treatment could remove a variable number of chromophores. If each Chi is 

individually exposed to the solvent, then it would be expected that each 

would have a different binding affinity and be released under different 

extraction conditions. In such a picture of Chl-protein arrangement, it 

is important to consider the effect of detergent on the complex and the 

integrity (as compared to in vivo) of the various particles. This is 

particularly true in light of the large amount of free pigment released 

in the initial solubilization of thylakoids [54]. It has been shown that 

for isolated LHC complexes, the energy transfer dynamics depend on 
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detergent concentration [61]. Nechushtai et al. [62] found that the 

fluorescence maximum of PS 1-65 particles shifted dramatically depending 

on the identity of the detergent; while the fluorescence maximum was 

located at about 670-685 nm in the presence of SDS or Triton X-100, it 

appeared at 721-725 nm when using dodecyl maltoside. However, it has 

been shown on the basis of low-temperature LD and fluorescence 

experiments that the isolation of complexes as small as 65 Chl/P700 do 

not alter the intrinsic orientation of pigments inside the complexes 

[63]. In addition, particles of PS I-llO have been isolated without the 

use of detergents [64]. Although the excitation dynamics in this 

preparation appear the same as in those obtained using detergents, the 

fluorescence spectrum of the latter particle shows a component not found 

in the detergent-free particle [65]. 

Although PS I-llO is'often called the "native" particle, it is 

possible to prepare photosystem I complexes with as many as 200 Chl/P700 

[66]. These particles contain additional LHC proteins, and contain 

considerable Chi b. PS 1-200 is likely the naturally-occurring complex, 

since its size seems to match ~125 A particles observed in electron 

micrographs of thylakoid membranes [67]. By contrast, micrographs of 

PS I-llO particles reconstituted in phosphatidyl choline vesicles showed 

images 106 A in diameter [68]. Assuming approximately spherical 

complexes, these results give similar chromophore densities, with an 

average Chl-Chl separation of -IB A; such estimates using smaller 

particles may be inaccurate due to the enrichment in proteins which do 

not bind Chi. 

As mentioned above, PS I complexes (regardless of size) show several 
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fluorescence bands, which indicates inhomogeneous antenna structure. 

Although they are more difficult to distinguish, the absorption spectrum 

also contains several bands. The correlation between absorption and 

fluorescence maxima seem to be generally agreed upon, but there is some 

disagreement as to the interpretation of each band. Major fluorescence 

peaks have been observed at ~690 nm, and 720 nm, with a minor component 

sometimes occurring at 735 nm [69]. (The 735 band has only been observed 

in particles with >65 Chl/P700, and is seen in green plants, but not 

algae.) These three peaks appear to correlate with absorption peaks 

centered at about 675, 690, and 705 nm respectively [65]. Although these 

are the most commonly observed Qy bands, others have reported as many as 

five conçonents [46,68,70,71]. Identification of fluorescence bands is 

complicated by the fact that steady-state spectra are strongly dependent 

of temperature [72,73] and on detergent as mentioned above. In addition, 

steady-state fluorescence spectra are very sensitive to the presence of 

impurities (solubilized Chi and denatured complexes) because the 

fluorescence quantum yield is much lower for functional PS I than for 

nonfunctional impurities. 

The fluorescence excitation dynamics of PS I has been the subject of 

a considerable amount of study. It has become evident that PS I 

preparations with more than 65 Chl/P700 require at least three 

exponentials to describe the fluorescence decay [46,74-76]; experiments 

on mutant strains of Ç. reinhardtii which lack the PS II give very 

similar decays [74,75], indicating that isolation procedures do not 

significantly alter the dynamics in PS I preparations. The 

multicomponent decays invariably show a dominant fast component 
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(t - 50 ps)/ one or two intermediate components with lifetime(s) in the 

hundreds of picoseconds, and a very small amplitude long component (t -

2.2 ns). The long component is possibly due to a small number of PS I 

complexes which lack a trap, since the 2.2 ns lifetime is similar to that 

observed in a Ç. reinhardtii mutant lacking both PS I and PS II [75]. 

In smaller PS I particles (40 Chi a/P700 or less) the intermediate 

lifetime components disappear, and only a short (t < 40 ps) component and 

a long, ~6 ns component are observed [76-79]. (This immediately implies 

that the intermediate lifetimes observed in larger particles correspond 

to transfer from the peripheral to the core antenna.) The long component 

typically contributes less than 5% of the amplitude of the decay, and is 

likely due to impurities; its lifetime is similar to that observed for 

detergent-solubilized Chi a [80]. The fast lifetime has been attributed 

to efficient trapping by the PS I reaction center. This is supported by 

time-resolved absorption, which shows a 15-30 ps risetime for P700* 

formation [81]. The lifetime of this fast component has been shown to 

depend linearly on the size of the PS I antenna [77]. This result was 

interpreted in terms of a random walk across a uniform lattice using a 

theory developed by Pearlstein [82]. This analysis of the data indicated 

that the average single-step transfer time is 0.2 ps, which is reasonably 

close to estimates from Fôrster weak-coupling theory for Chi a molecules 

separated by ~18 Â (see above). The average transfer time was also 

reported to be relatively insensitive to the structure of the array 

(square vs. cubic); this observation is important since the chromophore 

positions are unlikely to correspond to a perfect lattice. Although the 

PS I core contains several spectral forms, analysis in terms of a lattice 
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model assumes a homogeneous array of Chi a. The observed linear 

dependence of trapping time on core antenna size therefore seems in 

conflict with the "funnel" description of EET [83], but would indicate 

that any intermediate traps (long-wavelength forms of Chi a) would have 

to be randomly distributed among the core. This is in agreement with 

observations that the shape of the absorption spectrum is independent of 

core antenna size [79]. In this type of arrangement, one would expect 

that at room temperature excitations would be rapidly homogenized among 

all spectral forms in the core antenna [79]. However, at low 

temperatures long-wavelength antenna forms become energy "sinks" because 

they are unable to undergo uphill transfer to surrounding (shorter 

wavelength) forms. Searle et al. [84] recently performed an analysis of 

the temperature dependence of excitation decay in PS 1-40 particles. 

They found that the fluorescence lifetime measured at 720 nm (emitted by 

the C690 absorption component) slows from -30 ps at 270 K to ~190 ps at 

10 K. The lifetime of the C675 fluorescence component (F690), however, 

was relatively independent of temperature, indicating that transfer from 

this component is not inhibited by temperature. The behavior of both 

components was interpreted in terras of a kinetic model in which both 

components may exchange energy with each other or with P700; no evidence 

of energy funnel behavior was detected. This kinetic model shows 

significant differences from a model used by Wittmershaus [65], in which 

the excitation must pass through the C690 component before being trapped 

by P700. This arrangement was suggested by a fast risetime in the long-

wavelength fluorescence, matching the decay of the short-wavelength 

component [85]. 
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In the above discussion of absorption and fluorescence components^ 

the precise identity of each component was not considered. In terms of 

the antenna Chi, there are two possibilities: the different components 

are due to Chi molecules in different environments (and therefore 

energetically shifted), or different bands arise from excitonic 

interaction between chromophores. These two explanations are not 

mutually exclusive, nor is there a sharp distinction between them; unlike 

the BChl a-protein discussed above, the components in the Qy spectrum are 

unresolved. Since the chromophore positions and orientations are 

unknown, the chromophore interaction energies cannot be explicitly 

calculated. However, an estimate of the average coupling energy may be 

inferred in the point dipole approximation using the 18 A separation 

mentioned above. A quantitative equivalent of Eq. 1.16 (with = 

Pb = P) is [86] 

U = (5.04 B-3)K (5.45) 

where R is in nm, |i is in Debye, and the interaction energy U is in cm"^. 

If the oscillator strength is taken as 5 D [86], and an "average" value 

of K as V2/3, then the 1.8 nm spacing gives an interaction energy of 

18 cm~^. This may be regarded as a conservative estimate since the size 

of the particles includes contributions from proteins which do not bind 

Chi, and monopole effects generally increase the magnitude of U [31]; in 

any case, it is evident that variations of only a few angstroms from a 

perfect lattice could produce appreciable splitting of the absorption 

bands. CD spectra of isolated PS I [87] show some evidence of excitonic 
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interaction, but seem to indicate that not all Chi molecules participate; 

this is in agreement with studies of small (8-10 Chi a/P700) particles 

which indicate that such coupling occurs very near the reaction center 

[88], and with linear dichroism spectra of electric field aligned 

conçlexes [89]. Also, hole-burning studies of PS 1-60 particles [90] 

indicate that some delocalized exciton character is present in the core 

antenna complex. 

The presence of excitonic interactions in the antenna of PS I would 

not necessarily conflict with any of the experimental results discussed 

above. In the interpretation of the linear dependence of lifetime vs. 

core antenna size [77], it is important to remember that the average core 

size is measured, with no indication of standard deviation in the size of 

the particles. It is entirely possible that only two to three different 

sizes of core antenna exist vitro, and the variable sizes reported are 

weighted averages of two distinct complexes. The measured excitation 

lifetime would then be a weighted average also, thus explaining the 

observed linear dependence. The temperature dependence of the excitation 

lifetime in core antennae [84] can also be explained in terms of 

excitonic interaction. Since the population of the exciton levels is 

governed by the Boltzmann distribution, at low temperatures only the 

lowest exciton level will be populated. If this level shows poor 

spectral overlap with the acceptor or low dipole moment strength, then 

the transfer probability would be expected to decrease with temperature, 

resulting in a longer excited state lifetime. It is interesting here to 

note the work of Pearlstein and Zuber [91], who considered the cyclic 

structure often observed in pigment-protein complexes. They found that 
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excitonic interaction in such structures can lead to low oscillator 

strength in the lower energy levels, producing an "exciton storage ring" 

effect. Although such a proposal is highly speculative, it is entirely 

possible that cyclic structures do exist in PS I antennae. Shubin, et 

al. [60] have observed that the 65 kD core proteins (variously reported 

as 81 kD) binds "12 Chi a molecules, and contains 2-3 parallel a/p 

domains. Therefore, they have proposed clusters of 4-6 Chi a molecules 

in each domain; this coincides with the number of absorption bands they 

observe in the Qy region. 

The question of whether excitonic interaction is present in the 

antenna of PS I is one of many which have yet to be answered. Also 

largely undetermined is whether low energy forms of Chi a play a part in 

EET, whether the "funnel" description is valid for this system, and how 

the pigments are coupled to the PS I reaction center. 
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CHAPTER VI. POLARIZED PUMP-PROBE SPECTROSCOPY OF EXCITON 

TRANSPORT IN BACTERIOCHLOROPHYLL A-PROTIEN 

FROM PROSTHECOCHLORIS AESTUARII 

Introduction 

Electronic excitation transport (EET) is the first process which 

occurs after light absorption by antenna pigments in green photosynthetic 

bacteria and plants. The excitation migration is believed to proceed by 

an incoherent random-walk mechanism [1] arising from Fôrster dipole-dipole 

coupling [2] between molecules or aggregates containing antenna 

chromophores. The antenna chlorophylls in plants are complexed with 

proteins in units containing six or more chromophores. In Sauer's "pebble 

mosaic" model, the chlorophylls within such units are strongly coupled, 

and electronic excitation exists as exciton states which are delocalized 

over the clusters [3]. Chromophores belonging to different units are 

weakly coupled, and EET between clusters is presumed to occur by ordinary 

Fôrster hopping. 

Few time-domain experiments have directly resolved the antenna EET 

processes in green photosynthetic organisms. Owens et al. [4] recently 

measured the reaction center quenching of antenna fluorescence lifetimes 

in photosystem I core antennae of P700 Chi a-protein complexes from 

barley, and in a photosynthetic mutant of Chlamydomonas reinhardtii 

without the photosystem II antenna/reaction center complex. The 

fluorescence lifetime varied linearly with core antenna size in both 

cases, in accordance with random walk models [5,6] in which the 
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chlorophylls are assumed to occupy the sites of a regular lattice. 

Analysis of the fluorescence profiles in terms of the lattice models 

yielded a calculated single-step EET time of between 0.1 and 0.2 ps in the 

core antenna of photosystem I. Excitation migration was found to be 

nearly diffusive, with photoconversion in the reaction center occurring on 

the average of once per 2.4 excitation hops from the core antenna. 

In our EET program, systems excited with linearly polarized laser 

pulses have been studied by analyzing the time-dependent fluorescence 

profiles I||(t), Ij_(t) polarized parallel and perpendicular to the laser 

polarization [7,8]. Unlike reaction center trapping of antenna 

fluorescence, this technique's sensitivity is specific to fluorescence 

depolarization attending single excitation hops from the laser-excited 

chromophore. However, the instrument function of -45 ps FWHM [8] in our 

current time-correlated single photon counting apparatus is far too slow 

for direct characterization of single-step EET in green photosynthetic 

antennae. We have therefore resorted to polarized pump-probe 

spectroscopy. The relationships between the polarized optical density 

components A||(t), Aj_(t) and time-resolved observables in EET are analogous 

to those for fluorescence intensity components, but the time resolution is 

laser pulse-limited. In separate experiments [9], we probed EET in 

glycerol solutions of rhodamine 640 at concentrations between 3.4 pM and 

1.4 mM, using both time-correlated single photon counting (to evaluate 

I|l(t) and Ij_(t) ) and pump-probe techniques (which yielded A||(t) and 

Aj_(t) ). The transport was found to be well described by a two-particle 

theory [10] for the time-dependent probability that the excitation resides 

on the laser-pumped molecule. Optimized Forster parameters from nonlinear 
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least-squares fits of the two-particle theory to the polarized profiles 

from both photon counting and pump-probe experiments proved to be 

congruent to within data scatter, ensuring that our pump-probe techniques 

furnish a valid test of transport in this prototype system. 

For our initial study of BET in photosynthetic antennae, we elected 

the bacteriochlorophyll (BChl) a-protein from the green sulfur bacterium 

Prosthecochloris aestuarii — the only bacterial antenna system whose 

3-dimensional structure is known [11]. Photon absorption in such bacteria 

occurs in the chlorobium chlorophyll system, which comprises some 10^ BChl 

Ç, d, or e molecules per reaction center. Excitation is channeled to a 

BChl a-protein complex containing -10% chromophores, which in turn funnels 

the excitation to the reaction center. The basic structural unit in BChl 

a-protein is a trimer of subunits containing 7 BChl a molecules each. The 

nearest-neighbor Mg-Mg separations for BChl a chromophores within a 

subunit range from 11.3 to 14.4 k [11]. The BChl a-protein crystallizes 

in either the P63 (hexagonal) or P6j^ (trigonal) space group [12]; there 

are no Mg-Mg separations shorter than 24 A (30 A) for chromophores in 

different subunit s in crystals of P63 (P6j^) symmetry [11]. (Tronrud et 

al. [13] have recently refined the x-ray structure of the BChl a-protein; 

they concentrated on the protein sequence and BChl a conformations, and 

did not report the chromophore orientations or positions.) Hence, BChl a-

protein from P. aestuarii presents a possible realization of the "pebble 

mosaic" model, in which BET (whose rate scales as R"® for chromophores 

separated by R) is expected to be far more rapid within subunits than 

among subunits. Absorption and circular dichroism spectra of the BChl a-

protein in a triglycerophosphate buffer show strong evidence for exciton 
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interactions in both the Qy absorption system at 809 nm and in the 

system at 603 nm [14]. The observed splittings in the Qy system are 

comparable to off-diagonal resonance dipole interaction energies (up to 

-250 cm"^) calculated [15] by a transition monopole method [16]. However, 

attempts to simulate the absorption and CD spectra based on the known BChl 

a-protein geometry have not been successful. 

In this work, we have performed pump-probe experiments on the BChl a-

protein band system at wavelengths between 598 and 609 nm. The long­

time behavior of An(t) and Aj_(t) varies with probe wavelength and is 

related to the projection of the probed transition moment along the 

crystal c-axis. The time-resolved data are analyzed using a kinetic model 

derived from the geometry of the BChl a-protein. 

Experimental 

The BChl a-protein solution in triglycerophosphate buffer [14,17] was 

generously provided by R. E. Fenna. For most experiments, it was 

concentrated to -5.0 optical density for 1 cm path length at 809 nm; its 

room temperature absorption spectrum between 590 and 840 nm matched 

published spectra [17,18]. Such solutions contain BChl a-protein 

crystallites with a mean particle size of at least 30 trimers [19]. 

Samples were housed between fused silica flats separated by a 800 pm 

teflon spacer; they were rotated at 12 Hz to minimize photooxidation by 

the laser beams during pump-probe scans. 

A multiline argon ion laser with 6 W plasma tube pumped a passively 

mode-locked dual-jet rhodamine 590-DQOCI laser [20] to produce vertically 
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polarized pulses between 598 and 609 nm with -50 mW average power at 125 

MHz repetition rate. Real-time autocorrelation traces [21] exhibited 

-1.5 ps FHHM. The output beam was divided into punç and probe beams, 

which were modulated at 5.0 and 0.5 MHz respectively with -80% modulation 

depth using Isomet 1206C acoustooptic modulators. The variably delayed 

pump beam was reflected by a BK-7 corner cube prism mounted on a Micro-

Controle OT10050PP translation stage (0.1 pm/step, 5 cm range). The beam 

polarizations were selected using identical calcite Glan-Thompson 

polarizers; the probe polarization was fixed at 45' from the laser 

polarization, and the pump polarization was varied. A 7.3 cm f. 1. lens 

focussed both beams to -20 pm diameter in the rotating sample. The 

average incident power was <5 mW in each beam. The transmitted probe beam 

was collected by an EG&G FOD-100 photodiode, and phase-locked single-

sideband detection was achieved at 5.5 MHz using a modified Drake R-7A 

radio receiver [22]. The receiver's signal-bearing 50 kHz intermediate 

frequency (IF) was tapped and routed to a Stanford Research Systems SR510 

lock-in amplifier (LIA) and was demodulated using the receiver reference 

IF output. Data were transmitted during pump-probe sweeps from the LIA 

via an RS-232 port to a DEC MINC-23 computer operating in a TSX-Plus 

multiuser environment. Pump-probe scans were normalized to the 

instantaneous square of the laser intensity by deflecting part of the 

laser beam into another FOD-100 photodiode, processing the signal in a 

current-to-voltage converter and RC filter, and transmitting the digitized 

signal through the LIA RS-232 port to the computer. 
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Results and Discussion 

A typical pump-probe profile obtained at 603 nm (the band maximum) 

with the probe polarization rotated 54.7® from the pump polarization is 

shown in Fig. 6-1. The observed decay, which corresponds to ground state 

repopulation in the BChl a-protein, is highly nonexponential; it is well 

described by the biexponential law P(t) = 0.41exp(-t/14.6 ps) + 

0.59exp(-t/52.4 ps). These time constants are some two orders of 

magnitude shorter than intrinsic Qy lifetimes of BChl a chromophores [23]. 

The isotropic decay obtained with the average power halved in both beams 

is very similar (P(t) = 0.43exp(-t/17.0 ps) + 0.57exp(-t/68.6 ps)). The 

rapid decay is therefore not primarily a consequence of exciton 

annihilation, which would be important if far more intense laser pulses 

were used; typical pulse energies were -0.05 nJ at 603 nm. 

In Figure 6-2, we show the polarized pump-probe transients A|| (t) and 

Aj_(t) at 603 nm and at 598 nm. They are dominated by coherent coupling 

artifacts [24] during the first -1.5 ps. These can be removed in 

principle by data antisymmetrization [25]; this procedure is useful only 

for data with higher S/N, which is limited here by the available 

concentrations of BChl a-protein. The transients were fitted instead with 

convolutions of the laser autocorrelation function with the 

phenomenological expressions 

A|,{t) = P{t){l + 0.8[{l-a)exp(-t/t) + a]} 

(6.1) 

Ax(t) = P(t){l - 0.4[ (l-a)exp(-t/T) + a]} 
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Figure 6-1. Photobleaching transient of triglycerophosphate buffer 

solution of BChl a-protein from P. aestuarii, obtained using 

603 nm pump and probe polarizations 54.7° apart. Continuous 

curve gives convolution of laser autocorrelation function 

with biexponential decay law P(t) = 0.41exp(-t/14.6ps) + 

0.59exp(-t/52.4ps). 
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Figure 6-2. Polarized pump-probe transients for BChl a-protein at 603 nm 

(upper panel) and at 598 nm (lower panel). In each panel 

the upper and lower traces correspond to A||(t) and Ax(t), 

respectively. Continuous curves show convolutions of laser 

autocorrelation function with Eqs. 6.1, with lifetime and 

anisotropy parameters optimized as described in text. Note 

the slower depolarization timescale at 598 nm. 



www.manaraa.com

159 

beginning with the data channel corresponding to 2.5 ps past the coherent 

coupling peak. The isotropic decay function P{t) was expressed as a 

biexponential function with parameters fixed at values obtained by fitting 

isotropic decays analogous to that shown in Figure 6-1. The polarized 

profiles A||(t) and Aj_{t) were fitted simultaneously in a linked 

deconvolution procedure [26] which minimized the combined sum of residuals 

for both profiles with respect to the parameters a and t. The results of 

such analyses are given for several pump-probe experiments at 609, 603, 

and 598 nm in Table I. Nonzero values of the parameter a are required to 

simulate the polarized photobleaching decays at 609 and 603 nm: analyses 

of pump-probe scans obtained over 125 ps windows (not shown in Fig. 6-2) 

confirm that A||(t)/A_L(t) does not approach unity at long times, and they 

yield fitting parameters similar to those derived from the shorter scans, 

which were limited to 25 ps windows. 

To model the depolarization due to BET in BChl a-protein, we consider 

the P63 crystal structure shown in Fig. 6-3. The unit cell contains two 

trimers [11,13] which are labelled ABC and DBF. Trimer ABC is located in 

an ab-plane which is displaced by 49.3 A along the c-axis from the plane 

occupied by trimers DBF, GIJ, and HKL. Because spectroscopic evidence 

supports the existence of strong exciton interactions between BChl a 

chromophores inside a subunit [14,15], our model presumes that Fôrster 

excitation hopping occurs between exciton states which are delocalized 

over tightly coupled groups of seven BChl a molecules. Creation of an 

exciton state in subunit A may be followed by migration to exciton states 

centered on other subunits. We arbitrarily restrict BET to hopping 

between neighboring subunits, and we distinguish two kinds of contiguous 
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Table I. Fitting parameters for polarized pump-probe profiles in BChl a-

protein from P. aestuarii ~ 

Wavelength^ Scan duration, a x, 

nm ps ps 

609 

609 

125 

125 

603 

603 

603 

603 

603 

603 

25 

25 

25 

25 

125 

125 

598 

598 

598 

25 

25 

125 

0.497 

0.485 

3.48 

1.47 

0.530 

0.435 

0.468 

0.422 

0.467 

0.537 

3.50 

5.65 

4.74 

5.12 

9.44 

5.28 

0 .0® 

0.0® 

0.034 

20.9 

18.3 

32.9 

^Parameter held fixed at 0.0. 
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a 

Figure 6-3, Schematic diagram of P63 (hexagonal) unit cell of BChl a-

protein from P. aestuarii. Unit cell dimensions are a = b = 

111.9 Â, c = 98.6 A [11]. Trimers ABC and DEF are separated 

by 49.3 k along the c-axis. 
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subunit pairs. The first kind is an adjacent pair of subunits within the 

same trimer, typified by A-B or D-E. The second kind is a pair of 

neighboring subunits belonging to different trimers, such as A-D or B-H. 

The Fôrster hopping rate between subunits i and j will scale approximately 

as 

"ij = ^iHj (*'2) 

where R^j is the separation between subunits. The orientational factor 

Kji^j is given in terms of the transition moment orientations dj^, dj in the 

lowest-energy exciton component of the Qy state by 

"ij ̂  d^'dj - 3(d^*R^j)(dj'R^j) (6.3) 

If a subunit centroid is defined as the mean Mg atom position inside that 

subunit, and if one associates Rj^j with the separation between centroids 

of subunits i and j, the distances R^^ and Rj^ pertinent to the first and 

second kinds of hopping are 33.1 and 61.5 A, respectively. Equation 6.2 

then implies that the relative transition rates will be given by w^^/w^ 

-0.024 Owing to the crystal symmetry, the orientational factors 

can be compactly expressed in terms of the transition moment orientation 

= (p, o, V)) a (p, o, -yjl-p^-ff^) in subunit A; they are 

*AB = 1 - + V 

*AD " - 1 

(6.4) 

(6.5) 
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The ratio is a slowly varying function of the (unknown) transition 

moment components p, a in the ab-plane for most < 1; typical 

values range between 0.0 and 2.0. The function is singular at 

special combinations of p and a where vanishes (e.g., p-0.7 and o-0.3, 

Eq. 6.4). The ratio of intertrimer to intratrimer hopping will 

consequently be small for most orientations dj^; it only becomes large for 

the singular orientations corresponding to very slow hopping rates w^g 

between subunits in the same trimer. The qualitative migration patterns 

for WAO/WAB » 1 and w^/wj^ « 1 are illustrated in Fig. 6-4. 

Prior to modelling BET for general we treat the limiting case 

where w^/w^ « 1 (cf.. Fig. 6-4b). The depolarization at early times 

following excitation of subunit A will then be dominated by hopping among 

subunits A, B, and C; negligible exciton populations will be found in 

subunits D through L. The time-dependent probabilities A(t), B(t), C(t) 

of finding excitation in subunits A, B, C are then given by solutions to 

the kinetic equation 

HA 
- ̂  = Wab<2A - B - C) (6.6) 

under the initial conditions 

A(0) = A, 

B(0) = C(0) = 0 

(6.7) 

(6.8) 
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Figure 6-4. Excitation migration patterns for a) and 

b) 
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The solutions are 

A(t) = AQ[1 + 2exp(-3w^t) ]/3 (6.9) 

B(t) = C(t) = AQ[1 - exp(-3w^t)]/3 (6.10) 

We next consider an idealized pump-probe experiment in which subunit A is 

excited in a trimer having the spécifie orientation shown in Fig. 6-5. 

The pump pulse is polarized along the laboratory-fixed x-axis, and pulses 

which probe A;, (t) and Aj_(t) are polarized along the x- and y-axes 

respectively. The trimer ab-plane is parallel to the xy-plane. The 

exciton transition moment for subunit A at the probe wavelength has 

components = o, p£y = p, = y; these components are normalized so 

that @2 + + ̂ 2 = 1. By symmetry, the transition moments for the same 

exciton transition in subunits B and C are 

Pgjj = -a/2 - pVT/2 (6.11a) 

Pgy = =#2 - p/2 (6.11b) 

(6.11c) 

^Cx = -«/2 + 

= -oVT/2 - p/2 

(6.lid) 

(6.lie) 

(6.11f) 

For a trimer whose orientation is displaced from that in Fig. 6-5 by 
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PUMP 

PROBE 

Figure 6-5. Pump-probe beam geometry and exciton transition moment 

orientations used in derivation of Eqs. 6.11 through 6.13. 
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arbitrary Euler angles 0, %, the transition moments in the laboratory 

system may be expressed using the pertinent rotation matrix 1 [27], 

X -o 
Ha = à • HA 

Hb = à • FB (6.12) 

Be - & ' *2 

Rotational averaging over the random BChl a-protein crystallite 

orientations in the solution then yields 

A||(t) - Pit, [<p̂ >A(t) + 

(6.13) 

Aj.(t) = P(t)[<pf̂ p2̂ >A(t) + 

Substitution of Eqs. 6.9-6.12 into Eqs. 6.13 then leads to expressions for 

A|l(t), Aj_(t) which are identical to the phenomenological Eqs. 6.1 if one 

makes the associations 

T  =  1 / 3 ( 6 . 1 4 )  

and 

a = (3?2_ 1)2/4 (6.15) 

According to this model, the observed depolarization lifetime t is shorter 

than the exciton hopping time by a factor of three. The form of the 
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residual anisotropy parameter a, which depends on the projection y of the 

exciton moment along the trimer symmetry axis, is reminiscent of intrinsic 

fluorescence depolarization observed in solutions of molecules in which 

the fluorescence transition moment is inclined at an angle cos'̂ y from the 

absorption moment [28]. 

Extension of this kinetic model to general ŵ /ŵ  requires ad hoc 

assumptions about the crystal boundaries. To test the effects of crystal 

size on the calculated absorption transients, we compared the EET 

simulated in P63 crystallites containing 7 trimers and 27 trimers. In the 

first type of calculation, excitation in the initially excited subunit A 

was allowed to migrate to subunits in the six trimers adjacent to trimer 

ABC. (These six trimers coincide with trimers DEF, GIJ, and HKL in the 

projection of Fig. 6-3, and they occupy ab-planes located 49.3 A above and 

49.3 A below the plane of trimer ABC.) Only six of the 21 subunit exciton 

populations in this 7-trimer calculation are independent by symmetry. 

Their Laplace transforms a(s) through i(s) obey 

(2Wĵ  + 2Wĵ  + s)a(s) - 2w;̂ b(s) -2Wĵ d(s) = Aq (6.16a) 

-Wĵ a(s) + (Wĵ  + 2Wĵ  + s)b(s) - 2vĵ g{s) = 0 (6.16b) 

-ŵ a(s) + (2ŵ  + + s)d(s) - 2wĵ e(8) = 0 (6.16c) 

-ŵ d(s) + (Wĵ g + s)e(s) =0 (6.16d) 

-ŵ b(s) + (2ŵ b + "AD + s)g(s) - 2ŵ i(s) = 0 (6.16e) 

-Wab5(s) + ("AB + s)i(s) = 0 (6.16f) 
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The seven determinants required for computation of the six Laplace 

transforms were evaluated numerically, and the inverse transforms A(t) 

through I(t) were obtained using the Stehfest algorithm [29]. Using 

equations for the 7-trimer system analogous to Eqs. 6.11 and 6.13, the 

polarized absorption transients A||(t) and Aj,(t) were computed for given 

hopping rates Wĵ , and probed exciton moment projection y along the c-

axis. In the 27-trimer calculation, the kinetic model included three 

trimers coinciding with ABC in the projection of Fig". 6-3, located at c=0 

and ±98.6 A; the two trimers superimposed on each of DEF, GIJ, and HKL and 

located at c = ±49.3 A; and 18 peripheral trimers having subunits whose 

ab-projections are contiguous to those of subunits E, F, I, J, K, and L, 

located at c = 0 and ±98.6 A. The anisotropy functions r(t) = 

2.5(A,|-Aĵ )/(A||+ 2Aj_) yielded by 7-trimer and 27-trimer calculations are 

compared for several combinations of ŵ ĝ and in Fig. 6-6. The 

7-trimer and 27-trimer calculations produce virtually identical results 

for large e.g., for Wĵ /ŵ  = 3 in the top plot in Fig. 6-6. The 

effect of finite crystal size becomes apparent when intertrimer EET 

becomes more rapid than intratrimer transport, as shown for ŵ /ŵ yj = 1/3 

in the bottom plot of Fig. 6-6. In the limit where ŵ /wĵ  » 1, the 

depolarization dynamics are controlled by. the first few migration steps, 

and are relatively insensitive to details of EET on the periphery. The 

anisotropy function in this limit approaches the single-exponential form 

r(t) = (l-a)exp(-t/t)+a, with the parameters t and a given by Eqs. 6.14 

and 6.15. The opposite limit Wĵ g/ŵ  = 0 is a somewhat artificial case 

(kĵ  = 0) in which the excitation equilibrates between two parallel stacks 

of subunits whose projections coincide with A and D in Fig. 6-3. The 
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Figure 6-6. Calculated anisotropy functions r(t) from EET simulations in 

BChl a-protein for (top) = (20.2 ps)'̂ , = 

(60.7 ps)~̂ ; (center) = (28.5 ps)~̂ ; (bottom) 

"ab ~ (66.0 ps)~̂ , = (22.0 ps)"l. Dashed and continuous 

curves are 7-trimer and 27-trimer simulations, respectively. 
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anisotropy decay here becomes single-exponential in a 7-trimer calculation 

with lifetime t = {3wjyj)"̂ , and biexponential with lifetimes (1.38wjyj)"̂  

and (3.62wĵ )"̂  in a 27-triraer calculation. For general combinations of 

"AB' "ad anisotropy decay is nonexponential, with r(oo) = a given by 

Eq. 6.15. 

Most of the pump-probe profiles were obtained at 603 nm, the peak 

absorption wavelength in the room-temperature system. The 603 nm 

depolarization times t obtained by fitting A]], Aj_ with convolutions of 

Eqs. 6.1 with the laser autocorrelation function are distributed about a 

4.78 ps mean with 0.76 ps standard deviation. We plot in Fig. 6-7 the 

anisotropy functions r(t) yielded by 27-trimer calculations for 

(s) "AB ̂  "AD *AB ~ 3"AD' "AB ~ "AD' "AB ~ "AD̂ *̂ 

The c-component y of the probed exciton transition moment was fixed at 

0.9, corresponding to a residual anisotropy parameter a = 0.511 similar to 

the 603 nm experimental values (Table I). In each case, the values of Wĵ  

and Wjyj (Table II) were scaled to render the 1/e decay time in r(t) equal 

to 4.78 ps. The 4.78 ps single-exponential decay time in case (a) 

corresponds to the hopping rates ŵ  = 1/3? = (14.3 ps)"! and ŵ  = 0. 

While the anisotropy decays in cases (b) and (c), Wĵ  = 3ŵ  and 

"ab ° "aD' (strictly speaking) nonexponential, they are nearly 

indistinguishable from the single-exponential decay in case (a). Hence, 

Figure 6-7 emphasizes that the observed decay will be essentially single-

exponential in our model for Wĵ /ŵ  > 1, and that a continuum of 

combinations of the hopping rates can account for the observed decay. 

Discernible nonexponentiality sets in for Wĵ g/wĵ j = 1/3 (case (d)) in Fig. 

6-7, but the displayed differences between this and the near-exponential 
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Table II. Fôrster transition rates from 27-trimer simulation of BEI in 
BChl a-protein from P. aestuarii 

Case ŵ /ŵ  ps ŵ , ps + ŵ , ps"̂  

a « 14.3 «« 0.070 

b 3 20.2 60.7 0.066 

c 1 28.5 28.5 0.070 

d 1/3 66.0 22.0 0.061 
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Figure 6-7. Calculated aniaotropy functions r(t) from 27-trimer EET 

simulations, scaled to exhibit same decay time (4.78 ps) as 

the experimental mean from fits of 603 nm profiles using 

Eqs. 6.1. Anisotropy decays for cases (a) and (b), 

corresponding to ŵ b/"ad ~ ~ 3, are essentially 

congruent and are given by continuous curve. Cases (c) and 

(d), corresponding to ŵ g/ŵ  = 1 and 1/3, are given by 

dotted and dot-dashed curves respectively. 
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cases are too small for detection under current S/M in polarized pump-

probe experiments. In summary, our 603 nm data establish a well-defined 

timescale for EBT depolarization in the BChl a-protein. In the context of 

our kinetic model (which assumes migration only occurs between proximate 

subunits), they are consistent with the ranges of hopping timescales 

0 < ŵ  < (15 ps)"̂  in combinations typified by Table II. Figure 6-7 

shows that depolarization studies alone cannot prove whether one of the 

migration patterns illustrated in Fig. 6-4 dominates EET; independent 

knowledge of the pertinent orientational factors (e.g., from polarized 

single-crystal absorption studies of the 809 nm Qy system or from 

successful modeling of exciton structure in the Qy absorption and CD 

spectra) is required. 

The 609 nm profiles are considerably noisier (S/N -4) than those shown 

for 598 and 603 nm in Fig. 6-2. Their depolarization lifetimes, 3.48 and 

1.47 ps, agree with the 603 nm mean (4.78 ps) within data scatter. The 

mean anisotropy parameter a = 0.477 at 603 nm agrees well with the values 

a = 0.497 and 0.485 obtained at 609 nm. This nominally corresponds to a 

Qjj exciton transition moment inclined 27® from the crystallite c-axis (Eq. 

6.15). However, the P. aestuarii exciton bands overlap appreciably due to 

thermal broadening at 300K [7], and two distinct electronic transitions 

(2-1* and 1-2* in the notation of Petke et al. [30]) contribute to the 

system. More than one exciton band may therefore contribute to the 

observed anisotropy. 

At 598 nm, the depolarization lifetime (24 ps mean, Table I) and lack 

of anisotropy contrast with the behavior exhibited at longer wavelengths. 

Wavelength variations in the anisotropy parameter a are easily 
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rationalized in terms of contrasting exciton transition moment 

orientations within the system. Our model cannot account for the 

observed disparity in depolarization lifetime, however, because EET should 

occur in the lowest-energy exciton component in the 809 nm Qy system 

irrespective of excitation wavelength. In separate experiments, we 

obtained polarized Qy fluorescence profiles from similar BChl a-protein 

solutions using a time-correlated single photon counting apparatus with 

300 ps instrument function [7,8]. Under this resolution, profiles excited 

at 609 and 603 nm proved to be completely depolarized at all times, while 

discernible anisotropy (Ij. > I||) appeared during the first few tens of ps 

in profiles excited at 593 nm. This behavior is consistent with the 

observed pump-probe depolarization timescales. These results suggest that 

some species other than BChl a-protein trimers contributes to the 

absorption at shorter wavelengths. Since the trimers cannot be 

dissociated into subunits without separating the BChl a from the protein 

[31], the impurity species may be randomly oriented BChl a molecules. 

This would explain the observed lack of anisotropy (a = 0) at 598 nm; the 

observed negative polarization (I,, - Ix < 0) at 593 nm would be a 

consequence [32] of the perpendicular and Qy transition moments 

exhibited by BChl a monomers. (The Q̂  and Qy transition moments are not 

generally orthogonal in BChl a-protein, owing to exciton interactions.) 

Furthermore, the Q̂  spectrum of BChl a monomers in solution peaks to the 

blue (573 nm in ether [14]) of the BChl a-protein spectrum. The 

difficulty experienced in simulating the Qy absorption and CD spectra of 

similar BChl a-protein solutions may stem in part from such inhomogeneity. 

In principle, crystallite orientational diffusion could contribute to 
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the observed depolarization. The linear dichroism of electric field-

aligned BChl a-protein particles exhibits a decay time of -140 ps [19]. 

Particle reorientation is thus far too slow to account for our 

depolarization timescale, as would be expected for BChl a-protein 

aggregates containing several tens of trimers. The magic-angle 

photobleaching decay (Fig. 6-1) may be attributed to excitation trapping 

at defect sites in the interior and on the surface of the BChl a-protein 

particles. Its nonexponentiality is logically a consequence of dispersion 

in the aggregate size and random walk length. The dominant long-component 

lifetime (52.4 ps) of the biexponential fit to the magic-angle decay in 

Fig. 6-1 is equivalent to -3.7 excitation hops between neighboring 

subunits. It is consistent with the 55.1 ps dominant component lifetime 

which we find in the magic-angle Qy fluorescence profile excited at 603 

nm; a triexponential fit to this profile yields the decay law I(t) = 

0.816exp(-t/55.1 ps) + 0.073exp(-t/507 ps) + 0.121exp(-t/2247 ps). 
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CHAPTER VII. ELECTRONIC EXCITATION TRANSPORT IN CORE ANTENNAE 

OF ENRICHED PHOTOSYSTEM I PARTICLES FROM SPINACH CHLOROPLASTS 

Introduction 

Electronic excitation transport (EET) in antenna chlorophyll 

complexes of green photosynthetic organisms has been extensively modeled 

by theoreticians [1-7]. Singlet excitation, created by photon absorption 

in light-harvesting antenna complexes, is believed to migrate by an 

incoherent random-walk mechanism until it is trapped at a reaction center 

complex. The excitation hopping is governed by a resonance dipole-dipole 

interaction [8] which produces transition rates varying with chromophore 

separation as R"®. Little structural information exists concerning the 

chlorophyll organization in green plant antennae; EET in such systems is 

frequently treated under the assumption that the chromophores occupy 

sites on a regular lattice [2,3]. It is now recognized that antenna 

chlorophyll molecules are complexed with proteins into clusters of six or 

more chromophores [7,9]. In Sauer's "pebble mosaic" model [9], 

electronic excitation is rapidly delocalized within such clusters, and 

migrates relatively slowly between clusters. Calculations which contrast 

the EET dynamics in a regular lattice with those in model systems 

containing strongly interacting clusters of five molecules [2] predict 

similar timescales in both cases for excitation trapping at reaction 

centers. Kinetic measurements of antenna fluorescence quenching by 

reaction centers therefore cannot easily differentiate between the 

regular lattice model and the pebble mosaic model for antenna EET. 
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Owens et al. [10] recently studied antenna fluorescence lifetimes in 

photosystem I core antennae of P700 Chi a-protein complexes from barley, 

and in a photosynthetic mutant of Chlamydomonas reinhardtii without the 

photosystem II antenna/reaction center complex. They determined that the 

fluorescence lifetime varied linearly with core antenna size in both 

species, in accordance with random walk models [11,12] in which the Chi a 

chromophores occupy sites in a regular lattice. Further analysis of the 

fluorescence profiles yielded a single-step EBT time of 0.1 - 0.2 ps 

between chromophores in photosystem I core antennae. The excitation 

migration was found to be nearly diffusive, and photoconversion in the 

reaction center occurred on an average of once per 2.4 excitation visits 

from the core antenna. 

In a separate work [13], we performed a polarized pump-probe study 

with -1.5 ps resolution on the structurally well-characterized BChl a-

protein from the green photosynthetic bacterium Proathecochloris 

aestuarii. Solutions of the BChl a-protein in triglycerophosphate buffer 

were excited in the system with linearly polarized pulses between 598 

and 609 nm, and probed with pulses polarized parallel or perpendicular to 

the pump polarization. The resulting transient photobleaching profiles 

A||(t), AjL(t) were fitted with convolutions of the laser autocorrelation 

function with the expressions 

A„(t) = P(t){l + 0.8[(l-a)exp(-tA) + a]) 

(7.1) 

Aj_(t) = P(t)il - 0.4[ (l-a)exp(-t/T) + a]} 
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The isotropic function P(t), which describes ground-state recovery in BChl 

a-protein if the 0̂  and Qy excited states do not absorb at the probe 

wavelength, was determined from magic-angle profiles obtained with the 

probe polarization rotated by 54.7® from the pump polarization. The time-

dependent depolarization implicit in Eqs. 7.1 describes the reorientation 

in the probed transition moment accompanying BET. Such pump-probe 

experiments therefore focus on the initial steps following laser 

excitation, rather than on overall random walk duration. At 603 nm, the 

mean depolarization lifetime t for BChl a-protein was 4.78 ps. The 

depolarization dynamics were analyzed with a kinetic model [13] based on 

the crystal structure [14] of BChl a-protein, in which the basic 

structural unit is a trimer of subunits containing 7 BChl a molecules 

each. Spectroscopic evidence [15,16] suggests that strong exciton 

interactions exist between BChl a chromophores inside a subunit; the model 

therefore assumed that Fôrster excitation hopping occurred between exciton 

states delocalized inside subunits. EET was arbitrarily restricted to 

migration between neighboring subunits, and two kinds of hopping were 

distinguished. The first kind occurred with transition rate ŵ  ̂between 

subunits in the same trimer (e.g., A-»B or D-+E in the projection of the 

BChl a-protein P63 crystal structure shown in Fig. 7-1). The second kind 

occurred with rate wĵ  between subunits in different trimers (e.g. Â D or 

B-»H). The 4.78 ps depolarization lifetime observed at 603 nm proved to be 

consistent with combinations of Wĵ  and ŵ  satisfying (ŵ  + ŵ )"̂  • 

15 ps. In the limiting case where ŵ /ŵ  » 1 (i.e., where intratrimer 

transport occurs far more rapidly than intertrimer transport), the 

theoretical expressions for A|,(t), Aĵ (t) become identical to Eqs. 7.1; the 
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a 

Figure 7-1. Schematic projection upon the ab-plane of the P63 crystal 

structure of BChl a-protein from Prostecochloris aestuarii, 

the only bacterial antenna system whose 3-dimensional 

structure is known. Unit cell dimensions are a = b = 

111.9 Â, c = 98.6 À [14]. Trimers DEF, GIJ, and HKL are 

separated from trimer ABC by 49.3 À along the c-axis. 
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observed depolarization lifetime T is then related to the intratriraer 

hopping rate by In such a case, the transition rate ŵ g 

consistent with T = 4.78 ps would be (14.3 ps)~̂ . Nonzero values of the 

residual anisotropy parameter a were required to fit most polarized pump-

probe profiles using Eqs. 7.1, owing to the nonrandom chromophore 

orientations in BChl a-protein. For the trimer packing geometry 

illustrated in Fig. 7-1, the parameter a is related to the direction 

cosine f of the probed exciton transition moment along the trimer symmetry 

axis by [13] a = (3ŷ  - 1)2/4. 

In the present work, the pump-probe experiments have been extended to 

the Chi a-protein core antenna complex in enriched photosystem I particles 

from spinach chloroplasts. The antenna Chi a-protein architecture is 

unknown in spinach (as in other plants), and these experiments offer clues 

on the Chi a chromophore organization. The present pump and probe 

wavelengths (665 - 681 nm) overlap the lowest-energy band in the Qy system 

of the enriched PS I particles (Fig. 7-2), providing direct excitation and 

monitoring of the singlet electronic state involved in transport. (This 

configuration contrasts with the BChl a-protein work [13] in which Qy 

transport was monitored following excitation of the system.) The 

polarized profiles An(t), Â (t) from spinach PS I core antennae are 

remarkably similar to those obtained from P. aestuarii, and their 

isotropic decays P(t) yield direct information concerning the excitation 

trapping at the reaction centers. 
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Figure 7-2. Absorption spectrum of PS 1-60 particles from spinach at 

1.6'K. 
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Experimental 

For experiments performed between 665 and 681 nm, a multiline Ar"*" 

laser with 6 W plasma tube pumped a passively mode-locked dual-jet 

DCM/DDCI dye laser to produce vertically polarized pulses with -40 mW 

average power at 125 MHz repetition rate. Autocorrelation traces at these 

wavelengths displayed FWHM ranging from 1.75 ps to 2.15 ps. The output 

beam was split into pump and probe beams, which were modulated at 5.0 and 

0.5 MHz respectively with -80% modulation depth using Isomet 1206C 

acousto-optic modulators. The pump beam delay was varied by reflection 

from a translatable BK-7 corner cube prism mounted on a Micro-Controle 

UT10050PP translation stage. The beam polarizations were defined using 

calcite Glan-Thompson prism polarizers; the probe polarization was fixed 

at 45' from the laser polarization, while the pump polarization was 

varied. Both beams were focussed to -10 pm diameter in the sample using a 

7.3 cm f.l. lens, and the average incident power was -5 mW in each beam. 

The probe beam was monitored by an EG&G FOD-100 photodiode, and phase-

locked single-sideband detection was performed at 5.5 MHz using a modified 

Drake R-7A radio receiver [17]. The receiver' s signal-bearing 50 kHz 

intermediate frequency was tapped and demodulated in a Stanford Research 

Systems SR510 lock-in amplifier (LIA). Pump-probe data were transmitted 

from the LIA through an RS-232 port to a DEC MINC-23 computer operating in 

a TSX-Plus multi-user environment, where they were normalized to the 

square of the instantaneous laser intensity detected by a second EG&G FOD-

100 monitor photodiode. 

The PS 1-60 sample preparation, which extracts solutions of highly 



www.manaraa.com

187 

purified reaction center particles enriched in iron-sulfur protein and 

P700 from spinach chloroplasts, has been described previously [18]. A 

PS 1-60 particle contains an 82-83 kDa reaction center Chi a-protein 

complex (CP I), along with 6 to 8 polypeptides (8-25 kDa) which are not 

complexed with chlorophyll and are termed Subunits II-VIII [19]. CP I and 

Subunits II-VIII contain two 2Fe-2S centers and two 4Fe-4S centers, 

respectively; the 43-45 kDa light-harvesting Chi a/Chl b antenna complex 

(LHC I) present in PS I-llO particles [19] are absent in PS 1-60. The 

particles are largely free of Chi b, cytochromes f, bg, and b-559; their 

p-carotene content is considerably reduced. PS 1-60 solutions in water, 

glycerol. Tris buffer, and Triton X-100 exhibited -2.5 optical density at 

675 nm in a 1 cm cell. Samples were housed between A,/4 fused silica flats 

separated by an 800 pm teflon spacer, and were rotated at 12 Hz during 

pump-probe scans to minimize photooxidation by the laser beams. All 

experiments were performed at room temperature. 

Results 

Close similarities appear among the PS 1-60 magic-angle photobleaching 

profiles obtained at 665, 670, 675, and 681 nm, wavelengths which lie near 

the peak of the main Chi a Qy absorption band of the core antenna (Fig. 

7-2). The isotropic decay at these wavelengths is nonexponential; a 

typical 675 nm magic-angle profile is shown in Fig. 7-3. Each of the 

magic-angle profiles was fitted for times later than -1.5 ps with a 

convolution of the laser autocorrelation function with a biexponential 

decay law; the resulting optimized parameters are listed in Table I. Two 
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Figure 7-3. Magic-angle profile for PS 1-60 particles at 675 nm. Contin­

uous curve is convolution of laser autocorrelation function 

with biexponential decay law P(t) = 0.534exp(-t/1.99 ps) + 

0.466exp(-t/16.8 ps). 
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Table I. Biexponential fitting parameters for magic-angle profiles from 
spinach photosystem I particles 

Wavelength, 
nm 

Scan 
duration, 

ps 
Al 

11' 

ps *2 
t2, 

ps 

665 25 0.725 1.41 0.275 18.7 
25 0.781 1.10 0.219 17.2 
25 0.744 1.25 0.256 16.8 
25 0.712 1.29 0.288 17.0 
50 0.678 3.94 0.322 36.8 
50 0.699 2.78 0.301 28.2 

670 25 0.597 1.64 0.403 17.6 
25 0.599 1.69 0.401 17.8 
25 0.624 1.69 0.376 18.2 
25 0.615 1.47 0.385 16.5 
50 0.630 4.39 0.370 29.8 
50 0.634 4.38 0.366 31.8 

675 25 0.520 2.00 0.480 15.8 
25 0.534 1.99 0.466 16.8 
25 0.570 2.99 0.430 19.9 
50 0.665 5.97 0.335 33.0 
50 0.672 6.06 0.328 32.5 
50 0.632 5.67 0.368 31.9 

681 25 0.551 3.38 0.449 19.7 
25 0.506 2.83 0.494 17.9 
50 0.613 6.47 0.387 23.2 
50 0.460 4.90 0.540 18.5 
50 0.541 5.69 0.459 22.8 
50 0.568 6.00 0.432 22.7 
50 0.544 6.13 0.456 22.9 
50 0.629 5.60 0.371 29.1 
50 • 0.603 5.64 0.397 25.9 
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pump-probe scan durations were used (25 and 50 ps); the final 

biexponential parameters depend on the duration selected, in consequence 

of the multi-exponential character of the isotropic decays. The profiles 

accumulated using 25 ps sweeps invariably show a dominant short component 

with average lifetime between 1.26 ps (665 nm) and 3.11 ps (681 nm); the 

long component lifetimes are distributed about a mean of 17.8 ps with a 

standard deviation of 1.2 ps. The short component tends to exhibit a 

somewhat larger preexponential factor at 665 nm than at 670, 675, or 681 

nm. There is little else to distinguish among the isotropic decays at 

these four wavelengths. Nearly identical magic-angle profiles were 

obtained when the pump and probe beams were both attenuated by 50%; 

exciton annihilation is not a major component of the isotropic decay. A 

caveat should be attached to the present use of the 125 MHz laser 

repetition rate, which corresponds to 8 ns pulse spacing. While the 

intersystem crossing quantum yield in Chi a is low, sufficiently high 

repetition rates can build up appreciable triplet state populations to 

introduce artifacts into the absorption transients. Cavity-dumped pump-

probe experiments testing the effects of variable repetition rate are 

planned in our laboratory. 

Polarized transient profiles A||(t) and Aj_(t) are shown in Fig. 7-4 for 

675 and 681 nm. Such profiles were fitted with convolutions of the 

autocorrelation function with Eqs. 7.1 using a linked convolute-and-

compare algorithm described previously [20]. The biexponential parameters 

in the isotropic decay P(t) were held at the optimized values obtained 

from deconvolution of the corresponding magic-angle profiles (Table I); 
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Figure 7-4. Polarized pump-probe transients for PS 1-60 particles at 

675 nm (upper panel) and at 681 nm (lower panel). In each 

panel, the upper and lower traces correspond to An(t) and 

Aj_(t) respectively. Continuous curves show convolutions of 

laser autocorrelation function with Eqs. 7.1, with lifetime 

and anisotropy parameters as described in text. Parameters 

for displayed profiles are t =2.90 ps, a = 0.458 (675 nm), 

and X =2.91 ps, a = 0.636 (681 nm) . 
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Table II. Fitting parameters for polarized pump-probe profiles from 
photosystem I particles from spinach 

Scan 
Wavelength, duration. a a t. t. 

nm ps ps ps 

665 25 0.489 0.625 4.36 6.59 
25 0.658 7.73 
25 0.677 7.02 
25 0.402 6.77 
50 0.687 0.92 
50 0.837 12.8 

670 25 0.427 0.466 5.00 3.65 
25 0.409 2.79 
25 0.409 3.31 
25 0.489 2.88 
50 0.651 5.54 
50 0.412 2.43 

675 25 0.460 0.431 2.47 2.85 
25 0.458 2.91 
25 0.446 2.01 
50 0.313 2.33 
50 0.492 3.72 
50 0.419 3.64 

681 25 0.542 0.627 3.37 3.47 
50 0.636 2.91 
50 0.621 2.68 
50 0.671 5.51 
50 0.674 4.19 
50 0.725 3.00 
50 0.522 2.66 
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the phenomenological depolarization lifetime t and the residual anisotropy 

parameter a were varied. The final parameters from these linked 

deconvolutions are listed in Table II. Since A||(t) /Aj_(t) do not tend to 

unity at long times (cf., Fig. 7-4), nonzero anisotropy parameters were 

generally required to fit the polarized transients. (According to Eqs. 

7.1, this ratio approaches (1 + 0.8a)/(I - 0.4a) as t-*».) Moreover, the 

anisotropy parameter depends on the wavelength probed. The difference 

between the average anisotropy parameters a = 0.431 and 0.627 at 675 and 

681 nm, respectively, is significantly larger than their standard 

deviations, 0.062 and 0.069. This wavelength variation is also reflected 

in Fig. 7-4, in which the profiles exhibit contrasting asymptotic ratios 

A|| (t) /Aj_(t) at 675 and 681 nm. The average depolarization lifetimes t" 

range from 6.59 ps at 665 nm to 2.85 ps at 675 nm. This depolarization 

timescale is similar to that found in BChl a-protein from P. aestuarii 

[13], and the residual anisotropy in PS 1-60 is also reminiscent of the 

behavior exhibited that system. The former observation is pertinent to 

the physical interpretation of the transient depolarization in P. 

aestuarii, since those experiments probed photobleaching in the rather 

than the Qy system of the BChl a-protein [14]. The similarity of the 

depolarization timescales in the two species corroborates the attribution 

of the BChl a-protein depolarization to EET, rather than to nonradiative 

processes such as Qx-K2y internal conversion. 
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Discussion 

Owens et al. [10] recently reported that the fluorescence decay of 

P700 Chi a-protein preparations with Chi a/P700 ratios <40 exhibits a 

dominant component with lifetime between 15 and 30 ps. This order of 

magnitude is commensurate with our PS 1-60 isotropic long-component decays 

(t" = 17.8 ps) in Table I, and suggests that our isotropic decay mechanism 

for 665 nm < X < 681 nm is efficient excitation trapping at the P700 

reaction center. The short components in Table I typically contribute 

<15% of the integrated photobleaching decay, and would escape detection 

under the 60-80 ps instrument function [10] in time-correlated single 

photon counting. 

While much is now known about the 3-dimensional structure of BChl a-

protein from P. aestuarii [14], the light-harvesting Chi a/b-protein 

complex of photosystem II [21], and the light-harvesting C-phycocyanin 

biliprotein from the blue-green alga Mastiqocladus laminosus [22], we are 

unaware of similar data on the structure of photosystem I core antennae. 

The oligomers in the well-characterized pigment-containing proteins in 

photosynthetic systems have all proven to be trimera, perhaps because 

three-fold symmetry is the minimum required for isotropic absorption of 

light polarized in a plane perpendicular to the oligomer's symmetry axis 

[14]. We therefore consider kinetic depolarization models similar to one 

proposed earlier [13] for BET in BChl a-protein. Closed-form expressions 

for A||(t) and Aj|_(t) are obtained when the intratrimer transition rate ŵ g 

is assumed to be much faster than the intertrimer transition rate ŵ yj. 

Under these conditions, the exciton state populations A(t), B(t), C(t) in 
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subunits A, B, and C following creation of an exciton state in subunit A 

evolve as [13] 

A(t) = AQ[1 + 2exp(-3ŵ t) 1/3 

(7.2) 
B(t) = C(t) = AQ[1 - exp(-3ŵ t)]/3 

where k is the rate constant for hopping between adjacent subunits. The 

corresponding expressions for the polarized transient components are 

A|,(t) - P(t)[<vî >A(t) + I7.3al 

Aj.(t) = P(t) (7.3b) 

Here pg, pg are the exciton transition moments in subunits A, B, C; 

the laboratory-fixed x and y axes are oriented along the parallel and 

perpendicular probe polarizations, respectively. EET between adjacent 

subunits in a trimer rotates the probed exciton transition moment by 2n/3 

about the trimer symmetry axis. Rotational averaging of Eqs. 7.3 over the 

random BChl a-protein crystallite orientations in solution then leads to 

Eqs. 7.1 for the polarized transients A||(t) and AJ_(t), provided that T = 

l/3ŵ  and a = - 1)̂ /4. We may also consider dimers (n=2) and 

tetramers (n=4) as possible oligomeric forms a priori (Fig. 7-5). Exciton 

migration between adjacent subunits with rate constant ŵ g rotates the 

probed exciton transition moment by 2n/n about the oligomer symmetry axis. 

For dimers, our kinetic model again leads to Eqs. 7.1 for A||(t) and AJ_(t), 
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A â 
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c )  Ma 

/^B 

A^c 
Figure 7-5. Oligomeric Chi a-protein models for interpretation of time-

dependent depolarization due to EBT; a) trimer, as in BChl 

a-protein from P. aestuarii; b) dimer; and c) tetramer. 
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with the depolarization lifetime and residual anisotropy parameter given 

by t = l/2wj^ and a = 1 - 3y^ + 3y^. For tetramers, the model leads to 

more complicated expressions with three depolarization lifetimes, 

A|,(t) = P(t){(2-2Y^+3y^) + (l+2y^-3Y^) exp (-4kt) 

+ 2(y^-y*)[exp(-2kt) - exp(-6kt)]} (7.4a) 

Aj^(t) = P(t)((3+2y2-3y4) + (3y ̂ -2y ̂ -1) exp (-4kt) 

- 2(y^-y*)[exp(-2kt) - exp(-6kt)])/2 (7.4b) 

While these do not exhibit the form of Eqs. 7.1, the asymptotic 

depolarization at long times may be described for tetramers using an 

effective anisotropy parameter a = 2.5[A||(oo) -  Aj^(oo) ] /[A| |(oo) + 2Aj_(<«>) ]  = 

(3y2 - 1)2/4. Generalization of these kinetic models to include EET 

between subunits belonging to different oligomers would require knowledge 

of the oligomer packing in photosystem I core antennae; this architecture 

has not been characterized. 

All of these models generally predict a nonvanishing anisotropy 

parameter a in consequence of the nonrandom chromophore organizations in 

the oligomers. The observation of a / 0 in Table II establishes for the 

first time that local ordering exists in the Chi a-protein core antenna of 

PS 1-60, irrespective of the oligomer model assumed. Polarized 

photobleaching decays exhibiting the form of Eqs. 7.1 are consistent with 

either dimers of trimers as basic Chi a-protein structural units. In our 

judgement, the present time resolution and profile S/N (cf.. Fig. 7-4) are 

not sufficient tô differentiate between the single-exponential 
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polarization decay predicted for dimers and trimers (Eqs. 7.1) and the 

multiexponential decay expected in higher oligomers (e.g., Eqs. 7.4) and 

in more sophisticated kinetic models incorporating transport between 

oligomers. This question may be resolved by performing similar pump-

probe experiments with a high-power, low-noise Nd:YAG-pumped dye laser. 

If the oligomers are assumed to be trimers of Chi a-protein subunits, the 

average depolarization lifetimes T = 6.59 and 2.85 ps at 665 and 675 nm 

(Table II) correspond to rate constants w^^ = (19.8 ps)"^ and (8.6 ps)"^ 

respectively for hopping between adjacent subunits. The fractional 

scatter in depolarization lifetimes t is considerably larger than that in 

the anisotropy parameters a, because the depolarization timescale exceeds 

the laser pulse FWHM by less than an order of magnitude. 

The depolarization timescale in PS 1-60 is more than an order of mag­

nitude slower than the 0.2 ps hopping time of Owens et al. [10] using a 

regular lattice model for BET in P700 Chi a-protein complex preparations. 

A logical rationalization for the comparatively long depolarization 

lifetimes t in Table II is that they arise from EET between clusters of 

Chi molecules, rather than between individual chromophores. On the basis 

of spectral hole-burning experiments on PS I core antenna complexes. 

Gillie et al. [23] have already pointed out that- the antenna protein 

structure may endow EET with some delocalized exciton character. In this 

interpretation, the wavelength variation in the residual anisotropy 

parameter would stem from contrasting directions of transition moments in 

different exciton components of the Chi a-protein Qy system. A more 

detailed rationalization of time-domain experiments like ours awaits 

better structural characterization of the Chi a-protein complexes. 
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CHAPTER VIII. POLARIZED PUMP-PROBE SPECTROSCOPY OF 

PHOTOSYSTEM I ANTENNA EXCITATION TRANSPORT 

Introduction 

The structure and electronic excitation transport (EET) dynamics in 

photosystem I core and peripheral antennae of green plants have been 

extensively studied by protein/pigment characterization [1-5], absorption 

and circular dichroism (CD) spectra [6-8], and subnanosecond fluorescence 

[8-15] and picosecond absorption [16-19] spectroscopy. The PS I core 

antenna contains some 25-30 Chi a molecules [6] that are complexed with 

the P700 reaction center by two polypeptides, whose molecular weights 

have been variously reported as in the 60-70 kD range [20, 21] and as 82, 

83 kD [1]. The peripheral antenna comprises Chi a and Chi b chromophores 

complexed with several smaller (19-25 kD) polypeptides [4, 5, 22, 23]. 

Recent CD studies of the molecular organization in the PS I core antenna 

[6, 7] suggest that the chlorophylls are grouped in clusters of 5-7 

molecules, which is reminiscent of the known chromophore grouping in the 

bacteriochlorophyll a-protein from the green sulfur bacterium 

Prosthecochloris aestuarii [24, 25]. 

It has long been recognized that the 670-680 nm Chi a core antenna Qy 

absorption band encompasses several spectrally distinguishable Chi a 

excited states [26]. These may arise a priori from exciton interactions 

among strongly coupled chromophores, from localized excitations on 

spectrally different Chi a molecules (e.g., due to contrasting porphyrin 

conformations occasioned by nonuniform protein environment), or from 
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both. Such spectral inhomogeneity raises two major issues concerning the 

antenna structure and transport kinetics in PS I. The first of these 

deals with the spatial organization of the spectral Chi a forms and its 

bearing on the EET dynamics. Enriched PS I particles with contrasting 

core antenna sizes including particles with Chi a/P700 ratio as low as 

8-10 [27] exhibit very similar absorption spectra [8], Hence, removal of 

antenna chlorophylls in preparations yielding different core antenna 

sizes does not alter the proportions of Chi a species responsible for 

various Qy subbands. This appears to be inconsistent with the "funnel" 

model [28] for antenna structure, in which the shorter wavelength Chi a 

species are visualized at the periphery and the longer-wavelength species 

are proximate to the reaction center. Alternatively, the Chi a spectral 

forms may be randomly distributed about the reaction center, so that the 

statistical ratios of spectral forms left intact in solutions of PS I 

particles with decreasing antenna size are invariant. Finally, the 

spectral Chi a forms in the core antenna may be complexed into identical 

protein subunits containing identical, inhomogeneous sets of 

chromophores; detergent fractionation may then reduce the antenna size in 

quantum steps of one subunit, automatically preserving the species 

population ratios. Owens et al. [8] showed that the time-resolved core 

antenna excitation and fluorescence spectra of PS I core antennae are 

independent of antenna size. Their time-resolved spectra indicated that 

the emitting Chi a species are not limited to the long-wavelength 

form(s), but are "nearly homogenized" over all of the spectral forms 

present throughout the emission lifetime. This rapid "homogenization" of 

core antenna excitation argues against the "funnel" model (in which 
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excitation transport occurs sequentially from short-wavelength to long-

wavelength components); it is consistent with randomly distributed 

spectral forms, and with spectral forms organized into essentially 

identical subunits. 

The second issue is the extent of excitonlike (delocalized) character 

of PS I antenna excitations. Owens et al. [9] measured fluorescence 

lifetimes in PS I core antennae of P700 Chi a-protein complexes from 

barley, and in a photosynthetic mutant of Chlamydomonas reinhardtii 

without the PS II antenna/reaction center complex. The lifetime of the 

fast fluorescence component varied linearly with core antenna size in 

both species, in agreement with random walk models [29, 30] in which the 

excitations were assumed to be localized on Chi a chromophores occupying 

sites on a regular lattice. Analysis of the fluorescence profiles 

yielded a single-step EET time of 0.1-0.2 ps between chromophores. The 

excitation migration was found to be nearly diffusive, and 

photoconversion in the reaction center typically occurred once per 2.4 

excitation visits from the core antenna. More recently 131], we obtained 

polarized photobleaching profiles through pump-probe spectroscopy on 

PS 1-60 particles enriched in iron-sulfur protein and P700 (Chi a/P700 

ratio ~60). At the wavelengths 665, 670, 675, and 681 nm, the 

photobleaching polarization decayed with mean lifetimes between 2.9 and 

6.6 ps. This comparatively slow timescale suggested that the 

depolarization accompanied EET between clusters of Chi a chromophores, 

rather than between individual nearest-neighbor chromophores. 

Considerable residual anisotropy appeared in the photobleaching profiles 

at long times, proving that local ordering exists in the Chi a-protein 
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core antenna complex of PS 1-60. 

In order to clarify the relationship between the pump-probe 

depolarization dynamics [31] and the numerous PS I antenna fluorescence 

studies [8-15], we have extended our work to PS 1-200 particles (Chi a/ 

P700 - 200) from spinach chloroplasts. Details of the magic-angle Chi a 

photobleaching decay observed in this work between 660 and 681 nm closely 

parallels the multiexponential fluorescence decays reported elsewhere 

[8,9] for particles of similar size. At shorter wavelengths (645-655 

nm), the magic-angle decay is dominated by a fast (~5 ps lifetime) 

component that is likely associated with excitation migration from Chi b. 

The observed Chi a depolarization lifetime between 660 and 681 nm 

exhibits marked wavelength dependence, behavior which was masked by the 

lower S/N and narrower wavelength range accessible in our earlier PS 1-60 

work. This wavelength dispersion in depolarization lifetime is 

consistent with predictions of Fôrster excitation transport rates based 

on published PS I core antenna absorption and fluorescence spectra [7,8]. 

Our results point to a PS I core antenna model in which the excitations 

are thermalized spectrally less than 1 ps, but require considerably more 

time (several ps) for spatial homogenization. This model is consistent 

with Sauer's "pebble mosaic" model [32], in which electronic excitation 

is rapidly delocalized within clusters of chlorophyll chromophores, and 

migrates relatively slowly between clusters. 
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Experimental 

The PS 1-200 particles (Chl/P700 ratio - 200) were isolated from 

spinach chloroplasts following the procedure of Mullet et al. [22]. Such 

native PS I particles retain all of the polypeptides which bind the 

light-harvesting antenna, core antenna, P700 reaction center, and 

associated electron acceptors [33]. The Chi a/Chl b ratio in the light-

harvesting complex is ~3.5, and contains some 100 chromophores [4, 34, 

35]; the overall Chi a/Chl b ratio for PS 1-200 particles is ~6 [34, 35]. 

PS 1-200 particles exhibit the structural and functional properties of 

PS I in thylakoids [34]. Particles were stored at 77 K in a buffered 

glycerol-water mixture (pH =8.3) with 0.1% Triton X-100. In contrast, 

the PS 1-60 particles used in earlier work [31] were largely free of Chi 

b, cytochromes f, bg, and b-559, and their p-carotene content was 

considerably reduced [36]. They contained the 82, 83 kD reaction center 

Chi a-protein complex, together with 6 to 8 polypeptides (8-25 kD) which 

are not complexed with chlorophyll. The light-harvesting Chi a/Chl b 

antenna complex present in PS 1-200 particles was absent in PS 1-60. 

Samples were housed between k/4 fused silica flats separated by an 800 pm 

teflon spacer, and were rotated at 12 Hz during pump-probe experiments to 

minimize photooxidation by the laser beams. All experiments were 

performed at room temperature. 

The pump-probe apparatus and optics were identical to those used 

previously [31]. The multiline Ar"*" laser used for pumping the passively 

mode-locked dye laser was superseded by a Coherent Antares 76-s Nd:YAG cw 

mode-locked laser, which generated 532 nm SH pulses with ~2 W average 
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power at 76 MHz repetition rate. The SH pulse width was "-70 ps FWHM. 

The hybrid mode-locked dye laser contained two jets (DCM lasing dye, DDCI 

saturable dye) and yielded vertically polarized pulses at wavelengths 

between 645 and 681 nm. A Coherent Model 7210 cavity dumper head driven 

by a Coherent Model 7200 driver reduced the natural 76 MHz pulse 

repetition rate to values as low as 1 MHz to check for effects of long-

lived excited state buildup on the Chi a/b photobleaching transients. 

Autocorrelation traces taken between 645 and 681 nm typically exhibited 

•>•1.5 ps fwhm. The pump and probe beams were modulated at 3.0 and 0.5 MHz 

respectively using Isomet 1206C acoustooptic modulators. A BK-7 corner 

cube prism mounted on a Micro-Controle UT10050PP translation stage 

delayed the pump beam. Beam polarizations were selected by calcite Glan-

Thompson prism polarizers; the probe polarization was maintained at 45° 

from the vertical laser polarization, while the pump polarization was 

alternatively parallel to, perpendicular to, or displaced 54.7® from the 

probe polarization. The two beams were focussed into the sample using a 

7.3 cm f.l. lens. The probe beam was monitored by an EG&G FOD-100 

photodiode, and phase-locked single-sideband detection was achieved at 

the 3.5 MHz sum frequency using a modified Drake R-7A radio receiver 

[37]. The receiver's internal 50 kHz signal-bearing frequency was 

demodulated in a Stanford Research Systems SR510 lock-in amplifier. 

Pump-probe data were transmitted to a DEC MINC-23 computer, where they 

were normalized to the square of the instantaneous laser intensity 

detected by a second EG&G FOD-100 monitor photodiode. 
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Results 

Isotropic photobleachinq decay 

A perspective display of the wavelength dependence of the PS 1-200 

magic-angle photobleaching decay (obtained with the pump and probe 

polarizations 54.7® apart) is given in Fig. 8-1. The coherent coupling 

artifact at very early times [38] is a consequence of the single 

wavelength pump-probe technique used; the relative S/N ratios obtained at 

different wavelengths reflect on the available laser power as well as on 

the photobleaching action spectrum (vide infra). The continuous curves 

in Fig. 8-1 show the optimized convolutions of the laser autocorrelation 

functions (obtained with a KDP SHG crystal in place of the sample) with a 

single-exponential decay law (645 nm), biexponential decay laws (650 and 

655 nm), and triexponential decay laws (660 through 681 nm). The final 

fitting parameters for all analyzed magic-angle profiles are listed in 

Table I. At wavelengths between 660 and 681 nm, a minimum of three 

exponentials is required to describe the decay. The first component 

in Table I, with lifetime typically 1 to 2 ps, has no counterpart in the 

fluorescence decays observed in PS I core antennae [8-15], because photon 

counting instrument functions are limited to 1^45 ps fwhm. Similar short-

lifetime components were observed in our PS 1-60 pump-probe experiments 

between 665 and 681 nm [31]. The optimized values of the second and 

third component lifetimes t2 and T3 depend on the duration selected for 

pump-probe scans. The second-component lifetimes T2 derived from the 

longer (250 ps) scans in Table I are generally 25-40 ps, times which 

resemble the "fast" fluorescence components reported by Owens et 
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Figure 8-1. Magic-angle photobleaching transients for PS 1-200 particles 

at eight wavelengths from 645 to 681 nm. The pump and probe 

wavelengths are identical. Continuous curves are optimized 

convolutions of laser autocorrelation functions with bi-

exponential decay law (645-655 nm) and triexponential decay 

law (660-681 nm). Note different time scale used at 645 nm. 
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Table I. Multiexponential fitting parameters for magic-angle profiles for 

PS 1-200 particles from spinach 

P(t) = Aiexp(-t/Ti) + A2exp(-t/t2) + Agexpf-t/tg) 

Wavelength ^2 *2' ^3 '3' 

nm ps ps ps 

645 1.000 2.00 

1.000 2.04 

0.713 2.11 0.287 2.11 

0.506 0.765 0.494 4.54 

-0.131 1.64 0.869 2.24 

-0.231 3.12 0.769 3.21 

0.753 0.393 0.247 4.86 

0.727 0.267 0.273 2.76 

0.679 1.60 0.321 7.95 

0.776 2.43 0.224 13.9 

0.810 2.67 0.190 24.1 

0.869 2.84 0.131 29.2 

0.807 2.81 0.193 25.9 

0.829 2.81 0.171 39.6 

660 0.448 2.56 0.227 12.6 0.325 250 

0.367 1.32 0.294 7.94 0.339 250 

0.436 3.50 0.182 15.7 0.382 250 

0.472® 2.20 0.286 33.6 0.242 250 

665 0.342 1.92 0.263 14.2 0.395 250 

0.493 1.19 0.180 11.5 0.327 250 

0.426 1.47 0.205 11.4 0.369 250 

0.458* 1.43 0.344 34.8 0.198 250 

®Magic angle profiles obtained from 250 ps scans. All other 

profiles were obtained using 50 ps sweeps. 
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Table I. (continued) 

Wavelength A2 ^2^ ^3 '3' 

ran ps ps ps 

0.489 1.11 0.240 14.9 0.271 250 

0.433 1.72 0.302 21.8 0.265 250 

0.317® 3.67 0.421 37.0 0.262 250 

0.413 1.34 0.175 24.5 0.412 194 

0.563 0.500 0.128 16.0 0.309 194 

0.564 0.557 0.173 16.0 0.263 194 

0.339a 3.21 0.241 39.0 0.420 254 

0.330® 4.23 0.257 44.7 0.413 255 

0.342® 2.42 0.210 29.8 0.448 215 

0.340 1.23 0.224 12.3 0.436 179 

0.377 0.225 0.206 13.1 0.416 179 

0.329 1.65 0.222 13.5 0.445 179 

0.340 1.23 0.224 12.3 0.436 179 

0.358® 4.15 0.243 38.1 0.399 234 

0.576® 1.48 0.163 26.9 0.261 213 

0.558® 2.36 0.182 23.9 0.260 212 
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al. [8] for photosystem I particles with Chl/P700 ratios %40; they are 

also similar to the fast PS I fluorescence decay times reported for 

chloroplasts and intact algae [39]. Third-component lifetimes 13 

obtained from 250 ps scans at 675 and 681 nm (Table I; not shown in Fig. 

8-1) are clustered around 200 to 250 ps; these are similar to the 

"intermediate" fluorescence components characterized in PS I preparations 

with Chi a/P700 ratios greater than 65 [8, 40, 41]. This decay component 

was not observed in our PS 1-60 pump-probe experiments [31]. Less 

accurate values for 1:3 are obtained in triexponential fits of magic-angle 

profiles obtained with 50 ps scans (cf.. Fig. 8-1), whose durations are 

considerably shorter than <3 values derived from 250 ps scans, (The 50 

ps scans were accumulated for purposes of modeling the isotropic decay 

function for analysis of the polarized photobleaching decays, because the 

depolarization timescale proved to be much faster than 13.) The 660-681 

nm magic-angle decays monitored using 50 ps time windows were therefore 

fitted with a triexponential model function in which T3 was fixed at 250 

ps, and the other five triexponential parameters were floated. We do not 

attach physical significance to the final parameters for triexponential 

fits to these 50 ps magic-angle profiles, which are used only to separate 

the isotropic and anisotropic portions of the polarized photobleaching 

profiles. 

While the magic-angle profiles for 660-681 nm in Fig. 8-1 

superficially appear to exhibit risetimes (i.e., rising portions 

following the coherent spikes at t=0), the convolute-and-compare analysis 

shows that this phenomenon is entirely a consequence of the broad wing on 

the laser pulse shape autocorrelation. The unusually broad "risetime" 
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feature in the 670 nm panel of Fig. 8-1, for example, is accompanied by a 

visibly broadened rising (t<0) edge in the profile. Deconvolution of 

these profiles with triexponential model functions uncovered no evidence 

for any risetime components (negative preexponential factors); we 

estimate that any risetimes present would be much shorter than 1 ps. 

In preliminary PS 1-200 magic-angle profiles taken at 675 and 681 nm, 

the third-component lifetime was found to be ~170 ps. Reduction of 

the laser power in the pump and probe beams yielded tg in the 200-250 ps 

range reported in Table I; the isotropic decay in the earlier profiles 

was accelerated by exciton annihilation. The laser power employed in the 

earlier profiles had been shown to be sufficiently low to avoid 

annihilation effects in photobleaching decay of PS 1-60 particles, and so 

the PS 1-200 profiles which exhibited 13 - 170 ps indicate that the 

effective domain size [42] in 660-681 nm photobleaching is significantly 

larger in PS 1-200 than PS 1-60 particles. 

The 250 ps maximum time window of our pump-probe scans was 

insufficiently wide to verify the presence of the 5-6 ns "long" decay 

component observed by Owens et al. in PS I antenna fluorescences [8, 9]. 

The PS 1-200 isotropic photobleaching signal typically decayed to ~15% of 

the initial amplitude by 250 ps, so the upper limit on the preexponential 

factor for such a component is conservatively estimated to be less than 

0.1. 

At the three shortest wavelengths (645, 650, and 655 nm) the 200-250 

ps decay component is absent, and the decay is well represented within 

noise by a biexponential law. The isotropic decay accelerates toward 

shorter pump-probe wavelengths, and exhibits "2 ps lifetime at 645 nm. 
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Figure 8-2. Wavelength dependence of preexponential factors hi, A3 for 

triexponential fits to PS 1-200 magic-angle photobleaching 

decays, P{t) = Aj^expl-t/tj^) + A2exp(-t/T2) + Agexpf-t/tg). 

The sum of preexponential factors is normalized to unity at 

each wavelength. 
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Figure 8-2, which plots the wavelength dependence of preexponential 

factors aiid A3 for the first and third triexponential decay 

components, emphasizes this trend toward more rapid magic-angle decay in 

the blue portion (645-655 nm) of the spectrum. 

The majority of these pump-probe profiles were accumulated with the 

dye laser cavity dumper repetition rate at 9.5 MHz. In separate 

experiments, isotropic photobleaching profiles were obtained for PS 1-60 

particles at several repetition rates down to 1 MHz; the profiles were 

not materially changed by such reductions in repetition rate. This fact, 

coupled with the similarity in PS I antenna excited state lifetime 

parameters found here and in the fluorescence studies [8-15], is 

convincing evidence that artifacts arising from long-lived excited state 

buildup are not present in this work. Our previous experience with pump-

probe spectroscopy of EET in alcohol solutions of rhodamine 640 [43] has 

shown that accurate isotropic and anisotropic photobleaching profiles are 

readily obtainable even when the laser pulse spacing is considerably 

shorter than the T^ state lifetime. 

Anisotropic photobleaching decay 

Representative anisotropic pump-probe profiles, generated using 

parallel and perpendicular pump-probe polarizations, are shown for 

PS 1-200 particles at 665 and 675 nm in Fig. 8-3. The simplest time-

dependent functions capable of modeling these and the other anisotropic 

profiles obtained at 660 through 681 nm have the form 
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Figure 8-3. Anisotropic photobleaching transients for PS 1-200 particles 

at 665 and 675 nm. At each wavelength, the upper (lower) 

profile was obtained using parallel (perpendicular) pump and 

probe polarizations. Continuous curves are optimized 

convolutions of Eqs. 8.1 with the laser pulse autocor­

relation functions. At 665 nm, t = 11.1 ps and a = 0.469; 

at 675 nm, x = 4.87 ps and a = 0.429. 
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A|,(t) = P(t){l + 0.8[(l-a)r(t) + a]} 

(8 .1)  

Aj^(t) = P{t){l - 0.4[(l-a)r(t) + aU 

Here P(t) is the magic-angle photobleaching decay measured with pump and 

probe polarizations separted by 54.7°. r(t) is an anisotropy decay 

function, initialized to unity at zero time, which tends to zero at long 

times. The presence of the residual anisotropy parameter a ̂  0 is 

necessitated by the fact that A||/Ajl does not approach unity at long times 

(cf.. Fig. 8-3) 

A||(~)/A_l(«) = (1 + 0.8a)/(1-0.4a) (8.2) 

or 

a = 2.5[A||(«) - Ai(")]/[A„(") + 2Aj_{'»)} (8.3) 

Pairs of anisotropic profiles A„(t), A^(t) were deconvoluted from the 

laser pulse autocorrelation function using a linked convolute-and-compare 

scheme [44] in which the six triexponential parameters in the isotropic 

decay function P(t) were frozen at the values found in the magic-angle 

profile analyses (Table I). The anisotropy decay function r(t) was 

phenomenologically modeled as single-exponential, although some evidence 

for nonexponentiality surfaced in the anisotropic profiles with higher 

S/N (e.g., bottom half of Fig. 8-3) and such nonexponentiality can be 

expected theoretically (see Discussion). The final depolarization life­

times t (based on r(t) = exp(-t/t)) and residual anisotropy parameters a 

yielded by the linked deconvolutions are listed in Table II. These 
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Table II. Anisotropic fitting parameters for anisotropic profiles for 

PS 1-200 particles from spinach 

A|, (t) = P(t){l + 0.8[(l-a)exp(-t/t) + a]} 

Ajjt) = P(t){l - 0.4[{l-a)exp(-tA) + a]} 

Wavelength, t, a 

nm ps 

660 13.3 0.612 

15.8 0.342 

11.3 0.605 

11.9 0.369 

665 8.79 0.468 

7.81 0.413 

11.1 0.469 

10.7 0.523 

670 3.82 0.336 

6.34 0.321 

7.48 0.293 

675 4.50 0.337 

4.26 0.366 

6.37 0.620 

681 6.99 0.528 

7.82 0.556 

5.67 0.476 
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depolarization lifetimes are plotted in Fig, 8-4 (open circles), along 

with their averages (closed circles), as a function of pump-probe 

wavelength. Other symbols represent calculations which will be discussed 

below. The depicted trend, hinted at in our earlier PS 1-60 work in 

which our DCM dye lasing bandwidth was limited to wavelengths greater 

than 665 nm, clearly shows that the depolarization lifetime increases 

from ~4 ps to -13 ps as the pump-probe wavelength is tuned toward the 

blue from 675 to 660 nm. 

At the three shortest wavelengths (645, 650, and 655 nm) where the 

isotropic decay is dominated by components with <5 ps lifetime (Table I), 

no evidence was found for depolarization on the timescale of several ps. 

Gillbro et al. [45] recently observed polarized photobleaching decays in 

the light-harvesting Chi a/b complex from photosystem II. They found 

that rapid energy transfer occured from Chi b to Chi a (6 ± 4 ps), and 

that no depolarization appeared in the Chi b photobleaching during the 

lifetime of Chi b excitation. However, they found evidence for 

excitation redistribution (~20 ps timescale) between differently oriented 

Chi a chromophores. Since the Chi b absorption in PS I is concentrated 

at the shorter wavelengths studied here (645-655 nm) and the antenna Chi 

a absorption system is centered at 670-680 nm (Discussion section), the 

LHC II depolarization behavior reported by Gillbro et al. qualitatively 

parallels that observed here in PS 1-200. 

Photobleaching action spectra 

The wavelength dependence of the pump-probe signals between 655 and 

692 nm was evaluated by measuring the signals at 100 ps and 7 ps and 
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Figure 8-4. Pump-probe wavelength variation of depolarization lifetimes 

T from deconvolution of anisotropic transients using Eqs. 

8.1 with r{t) = exp(-t/T). Open circles are lifetimes 

derived from single pairs of profiles A,, (t), Ai(t); filled 

circles are averaged values. Calculated lifetimes from 

deconvolution of PS 1-13 and PS 1-200 absorption spectra are 

given by squares and triangles, respectively. 



www.manaraa.com

221 

normalizing them to the square of the incident laser power at the 

pertinent wavelength. In Fig. 8-5, we show the action spectrum of the 

100 ps signal (which is a measure of the intensity of the third 

photobleaching component with lifetime T3 - 200-250 ps), the 7 ps signal, 

and the difference between the 7 ps signal and the 100 ps signal 

extrapolated back to 7 ps using the lifetimes tg in Table I. The latter 

difference yields an estimate of the action spectrum of the second 

photobleaching component, with lifetime t2 in the tens of ps. For 

comparison, the PS 1-200 steady-state absorption spectrum [46] is also 

shown. The action spectra peak well to the red (-680 nm) of the PS 1-200 

Chi a steady-state absorption band maximum at ~670 nm. This situation 

contrasts with fluorescence excitation spectra reported for a PS I 

preparation with Chi a/P700 = 33 [8], which closely approximate the 

steady-state absorption spectrum. 

Discussion 

Many of the PS 1-200 pump-probe phenomena reported here have been 

anticipated in earlier accounts of PS I time-resolved fluorescence 

experiments [8-15] and in our polarized pump-probe studies of PS 1-60 

particles [31]. Aside from an ultrafast component (tj^ - 1-3 ps) which 

overlaps the coherent spike, the multiexponential isotropic decays at 

660-681 nm are dominated by components with lifetimes T2 = 25-40 ps and 

t3 =• 200-250 ps. These coincide with the "fast" and "intermediate" 

fluorescence lifetime components observed by Owens et al. [8] for PS I 

particles with Chi a/P700 ratios 265. No isotropic photobleaching 
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Figure 8-5. Photobleaching signal normalized to the square of incident 

laser power at 7 ps (crosses), 100 ps (circles), and the 

difference between the 7 ps normalized signal and the 100 ps 

normalized signal extrapolated back to 7 ps using the life­

times 13 in Table I (triangles). Continuous curve is low 

temperature steady-state absorption spectrum of PS 1-200. 
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component with lifetime ̂  20 ps was found in our PS 1-60 work [31], in 

agreement with earlier reports [8, 9] that the "intermediate" component 

is absent in PS I particles with Chi a/P700 < 65. The pump-probe 

depolarization timescales found between 665 and 681 nm (Fig. 8-4) are 

commensurate with those seen in PS 1-60 [31]. All of these 

correspondences between our data and the earlier time-resolved PS I 

experiments confirm that while these pump-probe studies are potentially 

subject to artifacts from long-lived excited state buildup, exciton 

annihilation, and variations in PS I fractionation techniques, they do 

furnish an accurate probe of antenna excited state dynamics in particles 

kinetically similar to those studied by other groups. 

Several investigators have analyzed the static absorption spectra of 

PS I core antennae by simulating them as sums of Gaussian components [7, 

8]. Owens et al. decomposed the Chi a Qy spectrum of particles with Chi 

a/P700 = 43 into three components centered at 667, 677, and 685 nm with . 

-20 nm (450 cm"^) bandwidth [8]; Ikegami and Itoh simulated the Qy 

spectrum of highly enriched PS I particles as a sum of six Gaussians at 

650, 660, 669, 675, 684, and 698 nm, with 1/e bandwidths of 400-600 cm~^ 

[7]. Proposed models for the nature of BET between the different 

spectral forms of Chi a have included the "funnel model" [28], in which 

excitation migrates sequentially downhill and becomes concentrated in the 

long-wavelength Chi a species, and a more recent model [8] in which 

excitation becomes rapidly "homogenized" among the different spectral 

forms. We are unaware of published time-resolved data which support the 

funnel model for PS I antennae. The PS I fluorescence spectra reported 

by Owens et al. [8] lend considerable support to the homogenization 
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scenario, because substantial fluorescence is emitted by Chi a spectral 

forms other than the lowest-energy form. An unequivocal test of these 

models would be a dual-wavelength pump-probe experiment in which antenna 

Chi a absorption is probed at ~660 nm following excitation at «-685 nm: 

resolvable uphill BET from the 685 to 660 nm spectral forms in a 

"homogenization" process would be signalled by a 685 nm photobleaching 

risetime if excited state absorption is absent. We now analyze whether 

such risetime behavior would be detectable in the present single-

wavelength pump-probe experiments as well. In particular, we consider 

photobleaching monitored at some wavelength in a region of spectral 

overlap between adjacent forms of Chi a, such as Chi a-684 and Chi a-675 

in the simulation of ref. [7], The ratio ̂ ^675/^^684 of initial excited 

state populations in the two spectral forms will be given by the ratio 

®675^^684 their absorption coefficients at in the Beer's law limit 

of low excitation power. At early times where negligible excitation 

trapping has occurred at P700, equilibration of excitation between the 

spectral forms with uphill and downhill rates ky and k^j yields the time-

dependent excited state populations 

"675"' - k/""' [1 - e-<Vkd)tj + 

(8.4) 

"684"' - 4^4^ II - e-'Wt, . 

The observed photobleaching signal at is then proportional to 
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D(t) = Aeg75Ng75(t) + Aegĝ Ngĝ ft) 

(8.5) 

• A[1 - e"(̂ u kd)t] 4. gg-fku kd)t 

where Aeĝ g and Aegĝ  are the (ground state - Qy) differential absorption 

coefficients at the respective wavelengths. In view of Eqs. 8.4, the 

difference between the coefficients A and B for the rise and decay 

contributions to D(t) is then 

A - B » kd*675**684 + 6*675 " ̂u®684̂ *684 " 675**675 (8.6) 

If the excited state absorption is small (Ae - e) the condition for 

observation of risetime behavior (A - B > 0) becomes 

i < ^ < ^  ( 8 . 7 ,  
® 675 '̂ u 

The funnel model arises in the special case of essentially irreversible 

downhill BET, k̂ j » ky. In this limit, risetime behavior will be 

observed in single-wavelength pump-probe experiments at virtually all 

wavelengths Xjjj for which egg4>eg75. In the contrasting limit where 

kj/ky = 1, the excited state populations of the two spectral forms tend 

toward parity ("homogenization") at equilibrium, and no risetime will be 

observed at any wavelength according to Eq. 8.7. No risetime components 

are in fact observed in any of the isotropic profiles at the wavelengths 

of strong Chi a absorption (660-681 nm) in Table I, and hence we find no 

evidence of funnel-type EET in the photosystem I core antenna. However, 
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we cannot rule out unresolvably fast irreversible downhill EET (« 1 ps) 

on the basis of our data alone; dual-wavelength femtosecond pump-probe 

studies will help to resolve this question. Gaussian simulations of the 

Chi a Qy core antenna absorption spectrum predict that the absorption 

peaks of the various spectral forms are spaced -150-200 cm"̂  apart, 

irrespective of how many Gaussian components are used [7, 8]. This 

spacing is considerably narrower than the bandwidths (typically 400 cm"̂ ) 

of the fitted absorption [7, 8] and fluorescence [8] components. 

Consequently, while the Fôrster formulation of the EET transition rates 

between two adjacent Chi a spectral forms in terms of an overlap integral 

involving their absorption and fluorescence spectra [47] predicts that 

the downhill transition rate will exceed the uphill rate, it does not 

project that k̂ j » k̂  in the spirit of irreversible downhill transport. 

The rapid (<5 ps) isotropic decays observed at 645-655 nm (Fig. 8-1) 

indicate that the excited state probed at these wavelengths is 

dynamically different from the state(s) probed at 660-681 nm, where the 

isotropic decay is found to be fairly uniform with components of 25-40 ps 

and 200-250 ps. Since the Chi b Qy transition begins to dominate in this 

wavelength regime, these ultrafast decays may be associated with 

excitation migration from Chi b to the lower-energy Chi a species. Such 

decays are not readily resolved by time-correlated photon counting 

(15 45 ps instrument function) ; the fluorescence decay kinetics in 

Ç. reinhardtii mutants without the PS II reaction center were reported to 

be insensitive to excitation wavelength even when 95% of the absorption 

occurred in Chi b [12]. Similarly, the fluorescence decay was 

indistinguishable under 652 and 680 nm excitation of PS I particles 
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containing Chi b [8], Hence, EET from Chi b to the core antenna is much 

more rapid than core antenna excitation decay. Our ultrafast 645 nm 

isotropic decays (Fig. 8-1 and Table I) serve to lower the upper time 

limit on excitation migration from Chi b to "2 ps. Furthermore, while 

the 645-655 nm decays are fast, they are not laser pulse-limited, as is 

clear from the asymmetry of the profiles (Fig. 8-1); the Chi b 

deexcitation timescale does not appear to be much less than the laser 

pulse width. 

The depolarization lifetimes derived from anisotropic profiles (Fig. 

8-4) shows that while excitation may equilibrate rapidly over all of the 

Chi a spectral forms as suggested by Owens et al. [7], such equilibration 

does not extend spatially over the entire core antenna. In a scenario 

consistent with this observation, the core antenna chlorophylls are 

organized into (nearly) identical subunits, each containing a full 

complement of spectral forms of Chi a. Rapid equilibration of excitation 

occurs among the Chi a species inside a subunit, causing the antenna 

chlorophyll fluorescence spectrum and dynamics to be essentially 

independent of excitation wavelength 18]. Slower EET (manifested by the 

depolarization lifetimes in Fig. 8-4 and Table II) occurs between 

spectrally similar subunits with different orientations. The subunit 

orientations cannot be random, because the measured anisotropy parameters 

a in Table II are nonzero. This model is consistent with the conclusion 

of Shubin et al. [6] that the PS I core antenna contains several 

identical clusters of six to eight Chi a pigments each. 

The wavelength dependence of the depolarization lifetime was 

phenomenologically modeled by applying Fôrster theory [47] to the problem 
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of incoherent EET between like subunits. For definiteness, six Chi a 

spectral forms were assumed, having Gaussian absorption bands 6̂ (0) with 

positions, bandwidths, and peak heights listed in ref. [7]. The 

fluorescence spectrum of each Chi a species i was similarly modeled 

as Gaussian, with peak height and bandwidth proportional to and identical 

to the peak height and bandwidth respectively of the corresponding 

absorption component e ̂  (®). The fluorescence peak in f(<o) was 

arbitrarily shifted 3 nm to the red from the absorption peak in 8̂ (w). 

The rate Rĵ j of excitation migration from spectral component i in a 

subunit to spectral component j in a different subunit was evaluated 

using [47] 

and the resulting excitation decay from component i was computed as 

For each pump-probe wavelength • 1/w, the overall excitation migration 

rate from the initially pumped subunit then assumes the multiexponential 

form 

Rij = / f i (co) e j {(») da/ŵ  ( 8 . 8 )  

6 
P. (t) = exp[-tIR. .] 
1 

(8.9) 

6 
P(m,t) = Ze . (a)P. (t) 

i=l̂  1 
(8.10) 

These computed decays were then fitted with the single-exponential model 
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function Aexp{-t/t) to compute a theoretical depolarization lifetime t. 

The results are representd by squares in Fig. 8-4, where the theoretical 

lifetime at 675 nm has been normalized to the average experimental 

lifetime at that wavelength. Similar calculations using parameters 

resulting from a deconvolution of the PS 1-200 absorption spectrum are 

represented by triangles in Fig. 8-4. The theoretical lifetimes 

reproduce the qualitative trend of slower depolarization at shorter 

wavelengths, principally because the absorption coefficients of the 

components absorbing at the shorter wavelengths (650, 660 nm) are 

considerably smaller than those of the components absorbing at the longer 

wavelengths (669, 675, 684 nm). Excessive significance should not be 

attached to this calculation, owing to the crude assumptions made. The 

unknown dipole-dipole orientational factors [47] were not considered; the 

use of Eqs. 8.8-8.10 implicitly assumed that each pigment species i in 

one subunit is spatially equidistant from all of the pigment species j in 

the other subunit, so that the transition rates R̂ j depend only on the 

pertinent absorption and fluorescence spectra. The physical nature of 

the Chi a spectral forms (exciton states versus spectrally distinct 

monomers with different conformations, etc.) was also ignored. 

Nevertheless, this phenomenological calculation does mimic the essential 

features of Fig. 8-4, in which the average depolarization lifetime at 

each wavelength correlates inversely with the static absorption 

coefficient at that wavelength (Fig. 8-5). 
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CHAPTER IX. SUMMARY 

Initial experiments were performed on rhodamine 640 chromophores 

distributed on ZnO and fused silica surfaces. This study indicated that 

fast energy transfer could occur from photoexcited dye molecules into 

semiconductor surface modes, a decay route not available for dyes on 

fused silica. The coverage-dependent decay on fused silica pointed to 

another problem, that of energy transport among chromophore molecules. 

This subject was addressed further in experiments on rhodamine 640 

randomly distributed in glycerol solutions. In a homogeneous system such 

as this, depolarization techniques must be used to measure the rate of 

EET. The energy transfer parameters (specifically, the critical transfer 

distance RQ) were measured using both fluorescence depolarization via 

time-correlated single photon counting and absorption depolarization via 

pump-probe spectroscopy. The conclusion was that the two techniques 

quantitatively matched the predictions of the simple two-particle theory; 

deviations from the theory had been observed for DODCI in glycerol. 

Although the timescales covered were quite different, both techniques 

were able to accurately measure the critical transfer distance. This 

study established the reliability and validity of EET studies using pump-

probe spectroscopy. 

Because pump-probe absorption depolarization allows the resolution of 

much faster events than single photon counting, the technique was applied 

to photosynthetic antenna systems, where EET is expected to be extremely 

rapid. The first system studied was the BChl a-protein from P. 

aestuarii, for which the three-dimensional structure has been determined 
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by x-ray diffraction. The absorption polarization was found to decay to 

a constant, nonzero value with a time constant of "5 ps. The observed 

decay was interpreted in terms of the known trimeric structure, and 

pointed to the existence of strong coupling of clusters of seven 

molecules; the clusters were found to be weakly coupled to each other as 

in the "pebble mosaic" model of photosynthetic antennae. The residual 

polarization at long times was related to the projection of the probed 

exciton transition moment on the three-fold symmetry axis. 

The pump-probe depolarization was then extended to PS I of green 

plants, for which the three-dimensional structure is not known. The 

results indicated that an oligomeric form also exists in PS I antennae, 

with Forster hopping between small clusters of molecules. The timescale 

of transport indicates that the clusters should be separated by distances 

on the order of 30-40 A, similar to that in the BChl a-protein. The data 

also shows some evidence of inhomogeneity in the PS I antenna as 

indicated by a wavelength dependent depolarization lifetime; the exact 

cause of the wavelength dependence was not well determined. These 

studies represent the first time that local ordering has been established 

for the antenna system of a green plant. 

Future studies which could provide informative results include pump-

probe depolarization in the Qy band of the BChl a-protein. The studies 

in Chapter VI suffered from poor signal-to-noise due to the low 

absorption coefficient of the band of BChl a, and contributions to the 

depolarization lifetime may have occurred due to -» Qy internal 

conversion. In addition, pump-probe experiments of Qy transport as a 

function of temperature in this system would be particularly interesting, 
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since it would allow an unambiguous characterization of the temperature 

dependence of EET in photosynthetic systems. Such characterization could 

be very important in bridging the results of transport and trapping 

experiments at low temperature with those at room temperature. 

Since there are many unanswered questions about the nature of EET in 

PS I antennae, there are many different experiments which could be 

performed. One of the most informative would be two-color pump-probe 

experiments in the PS I core antenna. Such experiments could provide a 

definite determination of whether energy "funnelling" is an important 

process in energy transport and trapping. In a two-color experiment, one 

could use a pump wavelength of -675 nm and probe at -690 nm. If C675 and 

C690 are due to different molecules, one would expect to see a risetime 

of photobleaching at 690 nm corresponding to excitation transfer to this 

component. The risetime, when compared to the single-step hopping time 

measured by depolarization at 675 nm, would indicate the number of steps 

required to reach C690. If the calculated number of steps is -1, then it 

could be concluded that C690 is located among the C675; larger numbers 

would indicate that C690 in located near the reaction center, and the 

excitation must pass through several C675 to reach it. 

Such a two-color experiment could also provide data on whether 

excitonic interactions are present in the system. If the C690 component 

is a lower-energy exciton level of C675, then ̂  risetime would be 

expected; excitation of C675 would constitute excitation of C690 as well. 

In addition, reversal of pump and probe wavelengths could provide data on 

whether "uphill" transfer, either among the core antenna or from antenna 

chromophores to P700, is important in the excitation trapping process. 
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APPENDIX A. TRANSLATION CONTROL PROGRAM 

The following program was written to run on a Commodore 64 computer 

to provide for control of the translation stage used for the variable 

delay in pump-probe experiments. The main program provides five basic 

functions: 1) Move (relative), 2) Move (absolute), 3) Home, 4) Reset 

zero, and 5) Exit program. Option 1 asks the user to input the number of 

steps to be taken from the present position, while option 2 provides 

essentially a "go to" the given position. Both will later prompt the 

user for the desired speed and the number of steps per channel, a 

variable explained in Chapter II. Option 3 sends the delay stage to its 

zero position at maximum speed; option 4 resets the current position to 

be the zero position. 

The program uses several machine language subroutines, the first of 

which is entered at line 340. All motion control takes place from the 

machine language subroutines; a glossary of the storage locations 

accessed in these routines is given in Table I. Finally, it should be 

noted that there is no explicit entry to the subroutines at addresses 

49300 and 49800. The former is entered on a nonmaskable interrupt (NMI) 

which occurs when the number of steps limit is reached; the subroutine at 

49800 is entered at a fixed rate of 60 Hz (the interrupt request, or IRQ 

rate) while the machine language subroutines are active. 
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Table I. Variable storage locations used in machine language subroutines 

Address : Address : 
Decimal Low Byte High Byte Description 

49286 
49287 

49288 
49289 

49290 
49291 
49292 
49293 
49294 

49295 

134 
135 

136 
137 

138 
139 
140 
141 
142 

143 

192 
192 

192 
192 

192 
192 
192 
192 
192 

192 

49296 144 192 
49297 145 192 
49298 146 192 
49299 147 192 

49300- 148 192 
49386 

49500- 92 193 
49544 

49600- 192 193 
49631 

49700- 36 194 
49747 

Timer A low byte after ramp down 
Timer A high byte after ramp down 

Diagnostic 
Diagnostic 

Timer A low byte after NMI 
Timer A high byte after NMI 
Timer B low byte after NMI 
Timer B high byte after NMI 
Number of steps necessary to ramp to 

given speed 

5: 
4: 

Bit 7: 
Bit 6; 
Bit 
Bit 
Bit 3: 
Bit 2: 
Bit 1; 
Bit 0: 

Ramping necessary flag 
Unused 
Unused 
Ramp up complete flag 
Ramp down complete flag 
Ramp up in progress flag 
Ramp down in progress flag 
Currently in ramp mode flag 

Keyboard character hit (0=no key) 
NMI contents .AND. 3 
Ramp counter 
Number of NMI interrupts 

NMI interrupt routine 

Set-up subroutine 

Keyboard scan subroutine 

Termination subroutine 
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Table I. (continued) 

240 

Address : Address : 
Decimal Low Byte High Byte 

49800- 136 194 
49880 

49900- 236 194 
49981 

52736- 0 206 
52991 255 206 

52992- 0 207 
53247 255 207 

Description 

IRQ ramping subroutine 

KBD triggered ramp down 

Low bytes of SID frequencies 
used during ramping 

High bytes of SID frequencies 
used during ramping 
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01 
10 
15 
20 
30 
40 
50 
60 
70 
80 
90 
110 
120 
130 
140 
150 
160 
165 
166 
170 
180 
200 
250 
260 
262 
264 
266 
270 
280 
290 
300 
305 
310 
320 
330 
331 
332 
335 
336 
337 
338 
339 
340 
350 
360 
370 
380 
390 
400 
410 
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REM STEPPER MOTOR CONTROL PROGRAM 
DIM XTRA(256) 
POKE 53280,9-.POKE 53281,0 
CD=0:PRINT 
8=54272:T=56576:GOSUB2000 
FORJ=49500 TO 49544;READ A%:POKE J,A%:NEXT 
FORJ=49600 TO 49631:READ A%:POKE J,A%:NEXT 
FORJ=49700 TO 49747:READ A%:POKE J,A%:NEXT 
FORJ=49300 TO 49386:READ A%:POKE J,A%;NEXT 
FORJ=49800 TO 49880:RBAD A%:POKE J,A%:NEXT 
FORJ=49900 TO 49981;READ A%:POKE J,A%:NEXT 
FOR 1=49280 TO 49299:POKE I,0;NEXT 
FOR L=S TO S+24:POKE L,0:NEXT 
POKE S+5,0:POKE S+6,240 
POKE S+2,0:POKE S+3,8 
POKE S+24,15 
GOSUB 6000 
PRINT "[CLR]" 
IF 0P%>5 OR 0P%<1 GOTO 160 
ON 0P% GOTO 600,700,800,900,900 
PRINT 
IF D%<>1 AND D%<>0 GOTO 160 
FR = RATE/.06097 
FHI% = INT(FR/256):FLO% = INT(FR-256*FHI%) 
IF RATE>200 GOTO 270 
BHI% = INT((NS-l)/256):BLO% = NS-1-256*BHI% 
NS = BHI%*256 + BLO% +1 
POKE 251,0:POKE 253,0 
POKE 252,206:POKE 254,207 
POKE T+4,P2%:POKE T+5,P1% 
POKE T+6,BL0%:P0KE T+7,BHI% 
IF RATE>200 GOTO 320 
POKE S+1,FHI%:P0KE S,FLO% 
POKE S+24,15:POKE 56589,127 
POKE T+3,65:POKE T+1,D% 
TT = NS*PC/RATE 
RG = 2/3*NS*PC/1000 
IF RATE>200 THEN GOSUB 3000 
TT = INT(TT*100.)/100. 
RG = INT(RG*100.)/100. 
PRINT:PRINT "TRAVEL TIME = ";TT;" SECONDS" 
PRINT:PRINT "SCAN RANGE = ";RG;" PICOSECONDS" 
SYS 49500 
ALO% = PEEK(49290):AHI% = PEEK(49291) 
BLO% = PEEK(49292):BHI% = PEEK(49293) 
IF PEEK(49299)>0 GOTO 440 
DIST = NS*PC - (BHI%*256+BL0%+1)*PC + PC - 1 - (256*AHI%+ALO%) 
GOTO 410 
DIST = NS*PC + PC - 1 - (256*AHI%+ALO%) 
IF PEEK(49295)<128 GOTO 440 
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420 DIST = DIST + 65535 - (256*PEEK(49287)+PEEK(49286)) 
440 IF D% = 1 THEN DIST = -DIST 
450 CD =» CD + DIST 
460 PRINT;PRINT;PRINT 
470 PRINT "PRESENT COORDINATE = ";CD 
480 FOR 1=1 TO 2000;NEXT 
490 GOTO 110 
600 GOSUB 4500 
610 INPUT "[DOWN]NUMBER OF STEPS";NS 
612 IF NS<0 OR NS>500000 GOTO 610 
620 GOSUB 4000 
630 GOSUB 5000 
640 GOTO 180 
700 INPUT "[DOWN]COORDINATE";AM 
710 NS = CD - AM:D%=1 
720 IF NS<0 THEN D%=0 
730 NS = ABS(NS) 
735 IF NS<0 OR NS>500000 GOTO 700 
740 GOSUB 4000 
750 GOSUB 5000 
760 GOTO 180 
800 NS = ABS(CD):D%=1 
810 IF CD<0 THEN D%=0 
820 FOR 1= 1 TO 256 
830 IF NS<2*XTRA(I) GOTO 860 
840 NEXT 
850 RATE = 3500:GOTO 870 
860 RATE = (256*PEEK{52992+I) + PEEK(52736+1))*.06097 
865 IF RATE<0 OR RATE >3590 THEN INPUT "RATE";RATE 
870 PC = 0;GOSUB 4005 
880 PRINT "NUMBER OF STEPS/SECOND =";RATE 
890 GOTO 180 
900 IF CD = 0 GOTO 940 
905 PRINT "[DOWN][DOWN][RGHT][RGHT][RGHT]IRVON] WARNING:COORDINATE WILL 
BE LOST [RVOF]" 
910 INPUT "[DOWN][DOWN][RGHT][RGHT] ARE YOU SURE? ";Q3$ 
920 IF 03$ = "N" GOTO 160 
930 IF 03$ <> "Y" AND Q3$ <> "N" GOTO 910 
940 ON 0P% GOTO 160,160,160,950,999 
950 CD = 0;PRINT "[DOWN][DOWN][DOWN] PRESENT COORDINATE = ";CD 
960 FOR 1=1 TO 2000;NEXT 
970 GOTO 160 
999 END 
1100 DATA 120,169,130,141,13,221,169,148 
1110 DATA 141,24,3,169,192,141,25,3 
1120 DATA 169,136,141,20,3,169,194 
1130 DATA 141,21,3,169,77 
1140 DATA 141,15,221,169,35,141,14,221 
1150 DATA 169,65,141,4,212,88,76,192,193 
1199 REM END OF SUBROUTINE AT 49500 
1200 DATA 234,234,234,173,143,192 
1210 DATA 41,8,208,17,32,159,255 
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1220 
1230 
1240 
1299 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1399 
1400 
1410 
1420 
1430 
1440 
1450 
1460 
1470 
1480 
1490 
1495 
1499 
1500 
1510 
1520 
1530 
1540 
1550 
1560 
1570 
1580 
1590 
1599 
1600 
1610 
1620 
1630 
1640 
1650 
1660 
1665 
1670 
1680 
1690 
1695 
1699 
1999 
2000 
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DATA 32,228,255,201,0,240,237 
DATA 141,144,192,76,236,194,234,234,234 
DATA 76,36,194 
REM END OF SUBROUTINE AT 49600 
DATA 169,0,141,1,212,141,0,212,141 
DATA 24,212,141,14,221,141,15,221 
DATA 173,4,221,141,134,192 
DATA 173,5,221,141,135,192 
DATA 173,6,221,141,140,192 
DATA 173,7,221,141,141,192 
DATA 32,132,255,96,234,234,234 
REM END OF SUBROUTINE AT 49700 
DATA 120,173,13,221,41,3,141,145,192 
DATA 41,2,240,53,238,147,192 
DATA 173,4,221,141,138,192 
DATA 173,5,221,141,139,192 
DATA 173,143,192,41,128,240,41,169,147 
DATA 141,143,192,169,0,141,142,192,141,14,221 
DATA 169,255,141,4,221,141,5,221,169,39,141,14,221 
DATA 169,0,88,64,234,234,234 
DATA 238,146,192,169,0,88,64 
DATA 234,234,234,169,8,141,143,192 
DATA 169,0,88,64 
REM END OF SUBROUTINE AT 49300 
DATA 173,143,192,41,1,208,3,76,49,234 
DATA 172,146,192,177,251,141,0,212 
DATA 177,253,141,1,212,173,143,192 
DATA 41,4,240,16,238,146,192 
DATA 173,146,192,205,142,192,208,5 
DATA 169,144,141,143,192 
DATA 173,143,192,141,136,192,41,2,208,3 
DATA 76,49,234,206,146,192 
DATA 173,146,192,205,142,192,240,3 
DATA 76,49,234,169,136,141,143,192,76,49,234 
REM END OF SUBROUTINE AT 49800 
DATA 173,143,192,201,147,240,51 
DATA 120,173,4,221,141,138,192 
DATA 238,137,192 
DATA 173,5,221,141,139,192 
DATA 173,143,192,41,128,240,42 
DATA 169,147,141,143,192,169,0 
DATA 141,142,192,141,14,221,169,255 
DATA 141,4,221,141,5,221,169,33 
DATA 141,14,221,88,234,234,234 
DATA 173,143,192,41,8,240,247 
DATA 76,36,194,234,234,234 
DATA 169,8,141,143,192,88,76,36,194 
REM END OF SUBROUTINE AT 49900 
END 
FB = 20:FT = 3590:XTRA(0) = FB/60. 
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2010 
2020 
2030 
2040 
2050 
2060 
2070 
2080 
2090 
2100 
2110 
3000 
3020 
3030 
3050 
3060 
3070 
3080 
3090 
3100 
3110 
3120 
3995 
4000 
4005 
4010 
4020 
4025 
4030 
4035 
4040 
4050 
4500 
4510 
4520 
4530 
4540 
4550 
5000 
5010 
5020 
6000 

6010 

6020 

6030 
6040 
6060 
6070 
6080 
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PS = (FT-FB)/255:FQ = FB-PS 
FOR 1=0 TO 255 
FQ = FQ + PS 
IF 1=0 THEN 2060 
XTRA(I) = XTRA(I-l) + FQ/60. 
FR = FQ/.06097 
FHI% = INT(FR/256) 
FLO% = INT(FR-256*FHI%) 
POKE 52992+1,FHI%:POKE 52736+1,FLO% 
NEXT 
RETURN 
FA » RATE/FT:FM% = INT(FA/255) 
XS% = INT(XTRA(FM%)) 
TT = FM%/60.*2 + (NS*PC-2*XS%)/RATE 
NS = NS - XS%/PC 
BHI% = INT((NS-l)/256):BLO% = NS-1-256*BHI% 
NS = BHI%*256 + BLO% + 1 
RG = 2./3.*(NS*PC+XS%)/1000. 
POKE T+6,BL0%:P0KE T+7,BHI% 
POKE S,1;P0KE S+1,72:P0KE S+24,15 
POKE 49294,FM%:POKE 49295,133 
RETURN 
NS = NS*PC 
INPUT "[DOWN]NUMBER OF STEPS/CHANNEL";PC 
IF PC<1 THEN PC=10 
Pl% = INT((PC-l)/256):P2% = INT((PC-1)-256*P1%) 
PC = {256*P1% + P2% +1):NS = NS/PC 
IF NS>65535 GOTO 3995 
FPC = 2./3.*PC:FPC = INT(FPC*1000.)/1000. 
IF 0P% = 3 GOTO 4050 
PRINT "[DOWN]FEMTOSECONDS/CHANNEL = ";FPC 
RETURN 
PRINT "INPUT DIRECTION OF TRAVEL" 
PRINT "0 = MORE OPTICAL DELAY" 
PRINT "1 = LESS OPTICAL DELAY" 
INPUT D%:PRINT 
IF D%<>1 AND D%<>0 GOTO 4500 
RETURN 
INPUT "[DOWN]NUMBER OF STEPS/SECOND ";RATE 
IF RATE<0 OR RATE>3590 GOTO 5000 
RETURN 
PRINT "[CLR][DOWN][DOWN][DOWN][DOWN][RGHT][RGHT][RGHT][RGHT][RGHT] 
[RGHT][RGHT][RGHT][RGHT][RGHT][RGHT][RGHT]CONTROL OPTIONS" 
PRINT "[DOWN][DOWN][RGHT][RGHT]1)M0VE(RELATIVE)[RGHT][RGHT]4)RESET 
COORDINATE" 
PRINT "[DOWN][DOWN][RGHT][RGHT]2)MOVE(ABSOLUTE)[RGHT][RGHT]5)EXIT 
PROGRAM" 
PRINT "[DOWN][DOWN][RGHT][RGHT]3)HOME" 
PRINT "[DOWN][DOWN][DOWN][DOWN]COORD = ";CD 
0P% = 0 
PRINT [UP][UP][UP][UP][UP][UP][RGHT][RGHT]":INPUT "OPTION ";0P% 
RETURN 
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SUBROUTINE AT 49500 - SETUP 

SEI 
LDA #130 
STA 56589 
LDA *148 
STA 792 
LDA #192 
STA 793 
LDA #136 
STA 788 
LDA #194 
STA 789 
LDA #77 
STA 56591 
LDA #39 
STA 56590 
LDA #65 
STA 54276 
CLI 
JMP 49600 

120 
169,130 
141,13,221 
169,148 
141,21,3 
169,192 
141,25,3 
169,136 
141,20,3 
169,194 
141,21,3 
169,77 
141,15,221 
169,39 
141,14,221 
169,65 
141,4,212 
88 
76,192,193 

Set interrupt disable status 
Set NMI control register to gen­
erate NMI on timer B underflow 

Change NMI interrupt vector 
to address 49300 

Change IRQ hardware interrupt 
vector to address 49800 

Start timer B, count timer A 
underflows 

Start timer A, count 
external CNT2 transitions 

Start SID chip, generate 
pulse waveform 

Clear interrupt disable status 
Go to 49600 

SUBROUTINE AT 49600 - KEYBOARD SCAN AND WAITING LOOP 

NOP NOP NOP 
LDA 49295 
AND #8 
BNE +17 
JSR SCNKEY 
JSR GETIN 
CMP #0 
BEQ -19 
STA 49296 
CMP 49900 
NOP NOP NOP 
JMP 49700 

234,234,234 
173,143,192 
41,8 
208,17 208 ,17  

32,159,255 
32,228,255 
201,0 
240,237 
141,144 
76,236,194 
234,234,234 
76,36,194 

192 

Check for ramp down completed 
signal (bit 3=1) 

Branch on ramp down complete 
Look for key hit on keyboard 
Load key hit into accumulator 
If acc. = 0 then no key was hit 
Cycle back on no key hit 
Store ASCII code of key hit 
Go to 49900 on key hit 

Go to 49700 on ramp down complete 

SUBROUTINE AT 49700 - TERMINATION SEQUENCE 

LDA #0 169,0 
STA 54273 141,1,212 
STA 54272 141,0,212 Stop SID chip 
STA 54296 141,24,212 
STA 56590 141,14,221 Stop Timer A 
STA 56591 141,15,221 Stop Timer B 
LDA 56580 173,4,221 Store Timer A low byte 
STA 49286 141,134,192 final value 
LDA 56581 173,5,221 Store Timer A high byte 
STA 49287 141,135,192 final value 
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LDA 56582 173,6,221 
STA 49292 141,140,192 
LDA 56583 173,7,221 
STA 49293 141,141,192 
JSR lOINIT 32,132,255 

RTS 96 
NOP NOP NOP 234,234,234 

SUBROUTINE AT 49300 - NON-MASI 

SEI 120 
LDA 56589 173,13,221 
AND #3 41,3 
STA 49297 141,145,192 
AND •2 41,2 
BEQ +53 240,53 
INC 49299 238,147,192 
LDA 56580 173,4,221 
STA 49290 141,138,192 
LDA 56581 173,5,221 
STA 49291 141,139,192 
LDA 49295 173,143,192 
AND #128 41,128 
BEQ +41 240,41 
LDA #147 169,147 
STA 49295 141,143,192 
LDA #0 169,0 
STA 49294 141,142,192 
STA 56590 141,14,221 
LDA #225 169,255 
STA 56580 141,4,221 
STA 56581 141,5,221 
LDA #39 169,39 
STA 56590 141,14,221 
LDA #0 169,0 
CLI 88 
RTI 64 
NOP NOP NOP 234,234,234 
INC 49298 238,146,192 
LDA #0 169,0 
CLI 88 
RTI 64 
NOP NOP NOP 234,234,234 
LDA #8 169,8 
STA 49295 141,143,192 
LDA #0 169,0 
CLI 88 
RTI 64 

Store Timer B low byte 
final value 

Store Timer B high byte 
final value 

Re-init. I/O devices to allow 
cassette use 

Return to BASIC main program 

Set interrupt disable status 
Load NMI int. register contents 
Mask all but Timer A/B NMI's 
Diagnostic 
Check if NMI from Timer B 
If not a Timr B NMI, branch 
Count Timer B underflows 
Store current Timer A 

low byte value 
Store current Timer A 

high byte value 
Check if ramping 
is necessary (rate < 200 Hz) 

If ramping is unnecessary, branch 
Store signal to start ramp 

down (bit 1=1) 
Let ramp down 

count down to zero 
Stop timer A 
Reset Timer A to count number 

of steps taken during ramp 
down; start at maximum 

Start Timer A 
counting CNT transitions 

Zero accumulator before returning 
Clear interrupt disable status 
Return from interrupt 

Count non-Timer B interrupts 
Zero accumulator before returning 
Clear interrupt disable status 
Return from interrupt 

Store ramp down complete 
signal to exit waiting loop 

Zero accumulator before returning 
Clear interrupt disable status 
Return from interrupt 
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SUBROUTINE AT 49800 - INTERRUPT 

LDA 49295 173,143,192 
AND #1 41,1 
BNE +3 208,3 
JMP $EA31 76,49,234 
LDY 49298 172,146,192 
LDA (251),Y 177,251 
STA 54272 141,0,212 
LDA (253),Y 177,253 
STA 54273 141,1,212 
LDA 49295 173,143,192 
AND #4 41,4 
BEQ +16 240,16 
INC 49298 238,146,192 
LDA 49298 173,146,192 
CMP 49294 205,142,192 
BNE +5 208,5 
LDA #144 169,144 
STA 49295 141,143,192 
LDA 49295 173,143,192 
STA 49288 141,136,192 
AND #2 41,2 
BNE +3 208,3 
JMP $EA31 76,49,234 
DEC 49298 206,146,192 
LDA 49298 173,146,192 
CMP 49294 205,142,192 
BEQ +3 240,3 
JMP $EA31 76,49,234 
LDA #136 169,136 
STA 49295 141,143,192 
JMP $EA31 76,49,234 

SUBROUTINE AT 49900 - KEYBOARD 

LDA 49295 173,143,192 
CMP #147 201,147 
BEQ +51 240,51 
SEI 120 
LDA 56580 173,4,221 
STA 49290 141,138,192 
INC 49289 238,137,192 
LDA 56581 173,5,221 
STA 49291 141,139,192 
LDA 49295 173,143,192 
AND #128 41,128 
BEQ +42 240,42 
LDA #147 169,147 

Check if currently in 
ramp mode 

If not ramping, 
do normal IRQ routine 

If ramping, load # steps taken 
Change SID frequency 

low byte 
Change SID frequency 

high byte 
Check if ramping up is 

currently in progress 
If not ramping up, branch 
If ramping up, count this step 
Check if ramp up 

is complete 
If not complete, branch 
If complete, store 

ramp up over signal 
Check if ramping down is 
(diagnostic) 

currently in progress 
If not ramping down, 

do normal IRQ routine 
If ramping down, count this step 
Check if ramp down 

is complete 
If not complete, 

do normal IRQ routine 
If ramp down is complete, 

ramp down over signal 
Do normal IRQ routine 

Check if already in 
ramp down sequence 

If in ramp down, branch 
Set interrupt disable status 
Store current Timer A 

low byte value 
(diagnostic) 
Store current Timer A 

high byte value 
Check if ramping is 

necessary (bit 7=1) 
If ramping is unnecessary, branch 
If ramping is necessary, store 
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STA 49295 141,143,192 
LDA *0 169,0 
STA 49294 141,142,192 
STA 56590 141,14,221 
LDA #255 169,255 
STA 56580 141,4,221 
STA 56581 141,5,221 
LDA #33 169,33 
STA 56590 141,14,221 
CLI 88 
NOP NOP NOP 234,234,234 
LDA 49295 173,143,192 
AND #8 41,8 
BEQ -9 240,247 
JMP 49700 76,36,194 
NOP NOP NOP 234,234,234 
LDA #8 169,8 
STA 49295 141,143,192 
CLI 88 
JMP 49700 76,36,194 

ramp down in progress signal 
Count down to zero 

during ramp down 
Stop Timer A 
Reset Timer A to count number 

of steps during ramp down; 
count down from maximum 

Restart Timer A counting 
CNT2 transitions 

Clear interrupt disable status 

Check for ramp down 
complete signal 

If not completef check again 
If complete/ go to term, sequence 

If ramping unnecessary, store 
ramp down complete signal 

Clear interrupt disable status 
Go to terminations sequence 
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APPENDIX B. DATA ACQUISITION PROGRAM 

The following program was written in FORTRAN to run on a DEC PDP 

11/23 computer under the TSX-Plus operating system. The program receives 

interrupts via a DRV-11 card which are interpreted as "collect data" 

commands. The program makes extensive use of three subroutine packages; 

ALEDA, which provides connection to RS232 devices from FORTRAN; TSXLIB, 

which allows access to TSX system parameters from user programs; and 

HGRAPH, a data plotting subroutine package. The subroutines from these 

packages which are accessed in the program are listed in Table I. The 

basic logic of the program suspends operation at the CALL SUSPND line 

until an interrupt is received. At this time, control is forwarded to 

subroutine CPLRTN, which resumes program operation (CALL RESUME). A data 

point is then read from the SR510 lock-in amplifier via RS232 and plotted 

on the.screen. If this is not the final (512̂ )̂ data point, the program 

cycles back to the CALL SUSPND line. This cycle is repeated until 512 

data points have been collected, at which time the data may be normalized 

to the square of the laser power (if the user so chooses) and is then 

written to a disk file. 
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Table I. Subroutines used program LOCKIN from commercial subroutine 
packages ALEDA, TSXLIB, and H6RAPH 

Package Subroutine Description 

ALBDA LBNABL 
LERROR 
LPUTLN 
LRECEV 
LGETLN 
LPUTST 
LDSABL 

Enable device for transfer 
Output to console ALEDA error messages 
Output characters to specified device 
Initiate transfer of characters from device 
Access device for transfer of characters 
Output string to console 
Disable device for transfer 

HGRAPH 

TSXLIB 

INIPLT 
ERASE 
WINDOW 
SCALE 
AXIS 
MOVETO 
DMPPLT 
ENDPLT 

BRKCTL 
ISTPRV 
ICNINT 
IBISIO 
IBICIO 

Initialize plotting 
Erase the terminal screen 
Define size of window in inches 
Define axis range 
Draw and label axes 
Draw a line to the given point 
Empty the terminal buffer 
Deselect terminal for plotting 

Connect subroutine to specified keystroke 
Set current priority value 
Connect interrupt vector to user subroutine 
Set interrupt enable bit 
Clear interrupt enable bit 
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C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM LOCKIN-

10 

20 

30 

35 

ret. 

"Q" (81) to request data 
"G" (71) to get sensitivity 
"P" (80) to get phase setting 
"XI" to get laser power 

This program takes data from the SRS 510 lock-in amplifier when an 
interrupt signal from the Commodore 64 is received. A total of 
512 data points are taken and stored on disk. The data may be 
normalized to the square of the laser power. For more information 
on the subroutines used, see the HGRAPH, TSXLIB, and ALEDA manuals. 

EXTERNAL CPLRTN,BRKRTN 
COMMON NTIMES 
BYTE FILNAM{16),BUF(40),LINE(12),TERM(2),REQDAT(2),BUF2 (40) 
BYTE GETGN(2),YSCALE(2),GTPHAS(2),GETADC(3) 
DIMENSION DATA(512),ADCDAT(512) 
INTEGER*2 RTNCOD,RESET,NPTS,GAIN,POWER 
DATA TERM/1,13/ 'Define one terminator which is carr. 
DATA RESET/"1000/ 
DATA REQDAT/81,13/ iSend ASCII 
DATA GETGN/71,13/ iSend ASCII 
DATA GTPHAS/80,13/ "Send ASCII 
DATA GETADC/88,49,13/ ISend ASCII 
TYPE 75 
ACCEPT 900,FILNAM 
TYPE 15 
ACCEPT 910,NORM 
DO 5 1=1,512 
DATA(I)=0. 

NPTS=0 
IF (LENABL(0, , ,RTNCOD)) GO TO 10 
IF (LENABLd, , ,RTNCOD)) GO TO 10 
GO TO 20 
CALL LERROR(RTNCOD,10,'Console failed to enable.',25) 
STOP 
IF (LENABL(6,BUF,40,RTNCOD).NE.O) GO TO 30 ! Enable lockin input 
IF (LENABL(7,BUF2,40,RTNCOD).NE.O) GO TO 30 (Enable lockin output 
GO TO 35 
CALL LERROR(RTNCOD,20,'Lock-in enable failed.',22) 
STOP 
CALL LPUTLN(7,GETGN,2,RTNCOD,9,TERM) !Ask for gain setting 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,35,' LPUTLN error.',15) 
CALL LRECEV(6, , ,RTNCOD,RESET) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,35,' LRECEV error.',15) 
CALL LGETLN(6,LINE,4,RTNC0D,1,TERM) (Receive gain setting 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,35,' LGETLN error.',15) 
NCHARS=RTNCOD 
DECODE(NCHARS-1,25,LINE) GAIN 
GAIN=GAIN+3 
SENS=FL0AT(GAIN)/9. 
IF (SENS.LT.3.05) YSCALE(l)='m' I'm' for millivolt 

IAsk for name of output file 

lAsk if data is to be normalized 

I Enable console input 
I Enable console output 

IF (SENS.LT.2.05) YSCALE(l)='u' 
scales 

I'u' for microvolt scales 
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60 

45 

55 

ISBNS ranges from 1 to 500 
!Ask for phase setting 

.'Receive phase setting 

!Set up for plotting 

IF (SENS.LT.1.05) YSCALE(l)='n' !'n' for nanovolt scales 
YSCALE(2)='V' 
IF (YSCALE(l).EQ.'m') FACTOR=1000. 
IF (YSCALE(l).EQ.'u') FACTOR=(1000.)**2 
IF (YSCALE(l).EQ.'n') FACTOR»(1000.)**3 
SENS-(SENS-AINT(SENS-.1))*3. 
POWER=INT(SENS-.l) 
DIGIT=SENS-.1-FLOAT(POWER) 
IF (DIGIT.LT.0.95) MULT=5 
IF (DIGIT.LT.0.65) MULT=2 
IF (DIGIT.LT.0.3) MULT=1 
SENS=FLOAT(MOLT)*10**POWER 
CALL LPUTLN(7,GTPHAS,2,RTNC0D,9,TERM) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD) 
CALL LRECEV(6, , ,RTNCOD,RESET) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD) 
CALL LGETLN(6,LINE,8,RTNCOD,1,TERM) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD) 
NCHARS=RTNC0D-1 
DECODE(NCHARS,27,LINE) PHASE 
CALL INIPLT(7,10.2,7.2) 
CALL ERASE 
CALL WINDOW(1.4,9.8,.9,7.1) 
CALL SCALE(0,512.,0.,SENS) 
SENSNG=SENS/5. 
NYF0RM=2-P0WER 
CALL AXIS(50.,SENSNG,'CHANNEL',7,2,0,'SIGNAL',6,2,NYFORM) 
CALL MOVETO(0.,0.,0,0) 
CALL DMPPLT ! Empty the plotter buffer 
IBRKCH=3 
CALL BRKCTL(IBRKCH,BRKRTN) !Go to BRKRTN on Control/C 
CALL ISTPRV(127) !Set priority to 127 
CALL ICNINT( "360,CPLRTN,7,lERR) !Go to CPLRTN on interrupt 
IF (lERR.GE.O) STOP 'Error connecting to interrupt' 
lERR-IBISIO("167750,"100) !Set interrupt enable bit 
IF (lERR.GE.O) STOP 'Error setting interrupt enable' 
CALL SOSPND !Wait for int. from C64 
CALL LPUTLN(7,REQDAT,2,RTNCOD,9,TERM) !Ask for data point 
IF (RTNCOD.LT.O) GO TO 45 
GO TO 55 
CALL LERROR(RTNCOD,35,' LPUTLN error.',15) 
STOP 'Error receiving data' 
CALL LRECEV(6,BUF,40,RTNCOD,RESET) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,55,' LRECEV error.',15) 
CALL LGETLN(6,LINE,12,RTNCOD,1,TERM) IReceive data point 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,55,' LGETLN error.',15) 
NCHARS=RTNCOD 
DECODE(NCHARS-1,70,LINE) DATA(NPTS+1) ! Convert data, byte to real 
CALL LPUTLN(7,GETADC,3,RTNCOD,9,TERM) 
IF (RTNCOD.LT.O) GO TO 46 
GO TO 56 
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46 CALL LERROR(RTNCOD,35/ LPUTLN error.',15) 
STOP 'Error receiving ADC data' 

56 CALL LRECEV(6,BUF,40,RTNCOD,RESET) 
IF (RTNCOD.LT.O) CALL LERROR(RTNCOD,55, ' LRECEV error.',15) 
CALL LGETLN(6,LINE,12,RTNC0D,1,TERM) {Receive data point 
IF (RTNCOD.LT.O) CALL LERR0R(RTNC0D,55,' LGETLN error.',15) 
NCHARS=RTNCOD 
DECODE(NCHARS-1,69,LINE) ADCDAT(NPTS+1) ! Convert data, byte to real 
NPTS = NPTS+1 
POINT=FACTOR*DATA(NPTS) ! FACTOR = 1E3 (laV), 1E6 (uV), or lE9(nV) 
CALL MOVETO(FLOAT(NPTS),POINT,1,0) !Plot data point 
CALL DMPPLT 
IF (NPTS.LT.512) GO TO 60 ! Check if last point 
IERR=IBICIO("167750,"100) IClear interrupt enable bit 
IF (lERR.GE.O) STOP 'Error clearing interrupt enable' 
CALL BRKCTL(0,0) '.Return Ctrl/C to normal oper. 
CALL ENDPLT 

50 CALL LPOTSTCData transfer completed.\',RTNCOD) 
CALL LDSABL(6) 
CALL LDSABL(7) 
CALL LDSABL(O) 
CALL LDSABL(l) 
CALL ISTPRV(50) ! Reset priority to 50 
DO 80 1=1,NPTS 

80 DATA (I) =DATA (I) *FACTOR*10000. /SENS .'Scale to 10000=full scale 
IF (NORM.EQ.'Y') CALL PWRNRM(DATA,ADCDAT) !Normalize: (power)**2 

84 OPEN(UNIT=1,NAME=FILNAM,TYPE='NEW,ERR=82) 
DO 90 I=1,NPTS-1,8 

90 WRITE (1,92) I,(DATA(I+J),J=0,7) 'SENS ranges 1 to 500 
WRITE (1,95) SENS,YSCALE,PHASE 
CLOSE(UNIT=1) 
STOP 'End of program' 

82 TYPE 75 
ACCEPT 900,FILNAM 
GO TO 84 
STOP 

15 FORMAT(/'$Do you want to normalize the data? ') 
25 FORMAT(13) 
27 FORMAT(F7.2) 
69 FORMAT(FIO.4) 
70 FORMAT(Ell.5) 
75 FORMAT(/'$Name of output file? ') 
92 FORMAT(X,14,X,8F7.0) 
95 FORMAT(' SENS = ',F6.2,2A1,' PHASE = ',F7.2,' degrees') 
900 FORMAT(16A1) 
910 FORMAT(lAl) 

END 
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C 
C Subroutine to normalize data to the square of the laser power— 
C 

SUBROUTINE PWRNRM(DATA,ADCDAT) 
DIMENSION DATA(512),ADCDAT(512) 
DO 80 1=1,512 

80 DATA(I)«DATA(I)*50./(ADCDAT(I)*ADCDAT(I)) 
RETURN 
END 

C 
C Timing subroutine entered on interrupt 
C 

SUBROUTINE CPLRTN 
COMMON NTIMES 
NTIMES=NTIMES+1 !For debugging purposes 
CALL RESUME 
RETURN 
END 

C 
C Break sentinel control subroutine— 
C 

SUBROUTINE BRKRTN 
C This subroutine is executed when a Control/C character is pressed 
C on the keyboard. The subroutine releases the interrupt enable so 
C that an interrupt occurring after Ctrl/C does not crash the system 
C 

IERR=IBICIO("167750,"100) 'Disable interrupt 
IF (lERR.GE.O) STOP 'Error clearing interrupt enable' 
CALL ERASE ! Clear the screen 
CALL DMPPLT 
CALL ENDPLT !Terminate plotting 
CALL ISTPRV(50) ! Reset priority to 50 
STOP 'Program aborted by Control/C ! Terminate the program 
RETURN 
END 

!ADCDAT should 
!be about 7 
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